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High-Throughput Single-Nucleus RNA Profiling of Minimal
Puncture FFPE Samples Reveals Spatiotemporal
Heterogeneity of Cancer

Weiqin Jiang, Xiang Zhang, Ziye Xu, Qing Cheng, Xiaohan Li, Yuyi Zhu, Fangru Lu,
Ling Dong, Linghui Zeng, Weixiang Zhong, Yongcheng Wang,* Longjiang Fan,*
and Hongyu Chen*

Puncture biopsy, especially those preserved by formalin fixed paraffin
embedding (FFPE) samples, play an important role in various research
purposes. Diverse single-nucleus RNA sequencing (snRNA-seq) techniques
have been developed for FFPE samples, however, how to perform
high-throughput snRNA-seq on small FFPE puncture samples is still a
challenge. Here, the previously developed snRNA-seq technique
(snRandom-seq) is optimized by implementing a pre-indexing procedure for
the minimal puncture FFPE samples. In analyzing 20 samples from various
solid tumors, optimized snRandom-seq still detected ≈17 000 genes and
12 000 long non-coding RNAs (lncRNAs), achieving precise clustering based
on tissue origin. A head-to-head comparison with 10× Genomics on fresh
biopsy samples showed a similar gene detection rate, with significantly
enhanced lncRNA detection, indicating that the optimized snRandom-seq
technique maintains its established gene detection advantages even when
applied to small samples. Utilizing 7 puncture FFPE samples of liver
metastases from 3 colorectal cancer patients pre- and post-immunotherapy,
the cellular developmental trajectories are reconstructed and revealed
dynamic spatiotemporal heterogeneity during treatment, including insights
into pseudoprogression of immunotherapy. Therefore, the optimized
snRandom-seq offers a solution for high-throughput single-cell RNA and
non-coding RNA analysis in minimal puncture FFPE sample.
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1. Introduction

Single-cell RNA sequencing has provided
insights into the complexity and spa-
tiotemporal heterogeneity of the tumor mi-
croenvironment (TME),[1–4] and has paved
the way for new discoveries and thera-
peutic strategies of cancer. Single-nucleus
RNA sequencing (snRNA-seq), a variant of
single-cell sequencing, has proven partic-
ularly valuable for analyzing tissues that
are difficult to dissociate or preserve, en-
abling the study of cellular heterogeneity
within archived samples such as FFPE tis-
sues. However, the complexity of single-
cell or single-nucleus sample preparation
and preservation,[5] as well as the challenge
of obtaining dynamic samples to reveal
spatiotemporal heterogeneity[6] during the
treatment of patients with metastatic can-
cers, remain critical barriers to its broader
application in basic and translational cancer
research.

In the clinic, most samples, including
surgical and puncture biopsy specimens,
are typically formalin fixed and paraffin em-
bedded (FFPE), which can preserve tissue
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structure and spatial characteristics and facilitate long-term sta-
ble preservation.[7] Percutaneous puncture sampling is an impor-
tant tool in modern medicine in which tissue samples are ob-
tained from deep inside the body of patients with inoperable tu-
mors for diagnosis and precision medicine guidance.[8–11] Punc-
ture specimens are a valuable resource for cancer research,[12]

especially for drug resistance studies in patients with metastatic
tumors. Only high-resolution analysis of spatiotemporal molec-
ular and cellular heterogeneity in clinical specimens through dy-
namic repeated puncture samples can explore the mechanisms
of drug resistance that emerge during treatment. Therefore, it
is urgent to develop snRNA-seq technology for small puncture
FFPE samples. The development of snRNA-seq technology for
FFPE puncture samples has several technical difficulties. First,
the main challenge of using FFPE samples for single-cell se-
quencing is the degradation and crosslinking of RNA and DNA
molecules that occur during FFPE preservation, which limits the
yield and quality of single-cell sequencing, resulting in lower
sequencing efficiency and accuracy.[13] Second, the low sample
input from small FFPE samples obtained by biopsy poses a
great challenge in obtaining sufficient amounts of cells/nuclei
for high-throughput single-cell sequencing.

Although an increasing number of spatial transcriptomics
techniques can analyze the molecular spectrum of FFPE sam-
ples, these methods lack single-cell resolution and have lim-
ited gene detection capabilities.[14] Moreover, although nuclei
can be isolated from FFPE tissues, RNA crosslinking can be
reversed by heating and proteinase digestion, and the popu-
lar oligo(dT)-based RNA capture strategy is ineffective for these
low-quality samples, as demonstrated by snFFPE-seq using the
10× Genomics single-cell 3’ solution V3 platform.[15] Addition-
ally, novel approaches have been developed for use with FFPE
samples, such as snPATHO-Seq, which employs a technique
based on FFPE nuclear 10× genomics probes to capture spe-
cific gene features. However, it solely targets a small fraction of
the transcriptome.[16] Previously, our research team developed a
droplet-based snRNA sequencing technique, termed snRandom-
seq, for FFPE tissue by utilizing random primers to capture full-
length total RNA. In comparison to snPATHO-seq and snFFPE-
seq, snRandom-seq exhibits higher RNA coverage and detects a
greater abundance of non-coding RNA and nascent RNA.[17] Nev-
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ertheless, snRandom-seq necessitate a substantial amount of in-
put material, posing challenges for the analysis of small puncture
samples. Hence, to further exploit the potential of small punc-
ture FFPE samples, there is an urgent need for the development
of more applicable single-cell sequencing methodologies.

In this study, we optimized our previously developed
snRandom-seq technique by integrating it with pre-indexing
methodologies, rendering it more applicable for minimal punc-
ture FFPE samples. The optimized snRandom-seq performed
well in at least six common cancer types and exhibited a capacity
for dynamic spatiotemporal heterogeneity analysis through re-
peated biopsy, providing valuable insights that aid in the identifi-
cation of pseudoprogression of immunotherapy.

2. Results

2.1. Overview of the Optimized snRandom-Seq Method for
Puncture FFPE Samples

Emerging as an advanced variant of the snRandom-seq method,
the optimized snRandom-seq protocol specializes in snRNA-seq
designed explicitly for minimal FFPE clinical samples, such as
FFPE puncture samples (refer to Figure 1A). This innovative
adaptation is aimed at mitigating issues revolving around low cell
capture rates and potential experimental fallbacks attributed to
the limited count of initial nuclei in scarce FFPE samples. The
process begins by isolating the region of interest from the con-
densed FFPE tissue block and placing it into a test tube. The tis-
sue is then subjected to deparaffinization and rehydration with
xylene and alcohol washes, which facilitate nuclear dissociation
and permeabilization. To counterbalance the scarce biological tis-
sue in puncture samples, the method strategically reduces the
tissue sample size to a mere 60 μm (essentially, 3 rolls of 20
μm wax rolls). This ensures conservation of residual tissue for
auxiliary tests and analyses. In accordance with the scifi-RNA-
seq protocol,[18] the optimized snRandom-seq incorporates a pre-
indexing step during the reverse transcription phase for max-
imizing utility, diverging from the traditional path followed in
snRandom-seq. Here, unique pre-indexed primers are assigned
to nuclei from different samples, which are later pooled ahead
of the subsequent processes. Additionally, enclosing unmodified
single-stranded DNAs securely in place is achieved by engag-
ing multiple cycles of annealing and extending blocking primers
(Figure 1A). Seeking to maximize nuclei extraction from tiny bi-
ological samples, the Dounce Homogenization method is em-
ployed for thorough cell disruption, with varying experimental
parameters being fine-tuned based on specific sample features.
These parameters encompass deparaffinization time, rehydra-
tion time, lysis buffer, digestion time, homogenization iterations,
lysis time, and centrifugation (refer Table S1, Supporting Infor-
mation for further details). Built on prior influential work,[19,20] a
high-throughput single-nucleus barcoding microfluidic platform
has been developed and deployed for efficient implementation of
the optimized snRandom-seq. Upon application, high-quality cell
nuclei can be successfully harvested from a range of tumor tis-
sues, unanimously attesting to the proficiency and adaptability of
the optimized snRandom-seq method (see Figure S1, Supporting
Information for corresponding visual representation).
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Figure 1. Overview of the study and the optimized snRandom-seq method. A) Overview of the optimized snRandom-seq method used by this study. The
steps from nucleus extraction to preindexing and targeted sequencing are shown. B) Schematic diagram of experimental verification of the optimized
snRandom-seq method using a human and mouse nucleus mixture cDNA library. (C-E) Electropherogram C), barcode plot D) and species-mixing scatter
plots E) of optimized snRandom-seq data generated from the human-mouse mixture library. Barcode plot for identification of the barcodes that represent
true nuclei. Barcodes of the human-mouse mixed nuclei were ordered from the largest to smallest gene counts. Species-mixing scatter plots showing
the single-nucleus capture efficiency and doublet rate of optimized snRandom-seq. F) A flowchart of the study. From left to right represent the samples,
sequencing technologies used, and subsequent main analysis contents.

To confirm the accuracy and stability of the optimized
snRandom-seq technology, we still conducted a mixed-species
experiment using a blend of human and mouse cells (see
Figure 1B). Significantly, the diligent use of pre-indexing treat-
ment was carried out on the cells before their union, subse-
quently leading them through the steps of single-nucleus cap-
ture and sequencing. The created cDNA library exhibited peak
fragment sizes spreading between 300 and 800 bp (visible in
Figure 1C). The consistency and range of these fragment sizes

removed the need for fragmentation and directly met the require-
ments for the application of next-generation sequencing (NGS)
techniques. The robust data analysis that followed unveiled the
presence of unique and high-quality cell nucleus barcodes. The
noticeable steep slopes in the barcode-gene rank plot (as shown
in Figure 1D) provided evidence for a clear demarcation line sepa-
rating true cells from background noise. Average counts revealed
≈2500 genes per cell, demonstrating the proficiency of the op-
timized snRandom-seq in capturing a healthy gene expression
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profile per cell. Furthermore, the median ratios of mouse and hu-
man mitochondrial genes stood at ≈5% and roughly 15% respec-
tively (for full comparison, refer to Figure S2, Supporting Infor-
mation). Furthermore, the median proportions of mitochondrial
genes were ≈5% for mouse cells and roughly 15% for human
cells (see Figure S2, Supporting Information for a full compar-
ison). There was no evidence of enrichment in cell populations
with high mitochondrial gene proportions. Additionally, this mix-
ing experiment demonstrated an impressively low doublet rate of
just 0.62% (as illustrated in Figure 1E). These results collectively
indicate that the optimized snRandom-seq technology maintains
high stability and accuracy.

To further authenticate the effectiveness of the optimized
snRandom-seq technique on small FFPE samples, we designed
additional validation experiments (Figure 1F). Initially, 10 sam-
ples were obtained from pre- and post-treatment biopsies of
three patients who underwent immunotherapy. Among these,
7 FFPE samples were used for temporal heterogeneity analysis.
Additionally, three FFPE samples and three fresh samples were
used to compare the performance of optimized snRandom-seq
with the currently mainstream 10× Genomics technology. Sub-
sequently, we executed a series of optimized snRandom-seq ex-
periments on samples collected from six different common can-
cer types (Figure 1F). Leveraging the data generated by optimized
snRandom-seq, further data analyses were conducted, including
cell type annotation, copy number variations (CNV), pan-cancer
analysis, and pseudotime analysis.

2.2. Comparison of the Optimized snRandom-Seq with 10×
Genomics

To verify whether the optimized snRandom-seq technique main-
tains its established gene detection advantages in small-sample
analysis, we conducted a direct comparison using three FFPE
samples matched with fresh samples analyzed by the widely used
10× Genomics technology. Due to the enzymatic dissociation
method used in the preparation of the cell suspension by 10×
Genomics, a high degree of processing-related artefacts was ob-
served, as expected, in the RNA data generated by 10× Genomics,
including the stress response pathway (Figure 2A; Table S2, Sup-
porting Information). In contrast, lower expression of stress-
related genes was observed in the data generated by the opti-
mized snRandom-seq. These stress signals may introduce bias in
the interpretation of these pathways in scRNA data. As expected,
the optimized snRandom-seq data exhibited more uniform cov-
erage across an entire transcript, while 10× Genomics showed a
peak in single-end reads at the 3’ end (Figure 2B). Based on the to-
tal number of reads detected per cell and the corresponding num-
ber of features, the detection efficiency of optimized snRandom-
seq was comparable to that of 10× Genomics (Figure S3A, Sup-
porting Information). Based on the ratio of spliced and unspliced
reads, the proportion of unspliced reads in optimized snRandom-
seq data was nearly three times that of genomic technologies, par-
tially because FFPE samples can only be analyzed by nuclear ex-
traction (Figure S3B, Supporting Information). The total number
of genes detected in FFPE small samples was similar to that in
fresh samples, both at ≈17 000, with a high overlap proportion

(Figure 2C,D). Additionally, both techniques detected a number
of lncRNAs, consistent with the presence of a polyA structure
for some lncRNAs. Due to the random primer characteristics
of optimized snRandom-seq, the number of lncRNAs identified
was nearly six times higher than the 2000 detected by 10× Ge-
nomics, reaching over 12 000 (Figure 2C,D). In addition, the opti-
mized snRandom-seq detected many short noncoding RNAs, in-
cluding small nucleolar RNAs (snoRNAs), small nuclear RNAs
(snRNAs), and microRNAs (miRNAs) (Figure 2C). In terms of
the coverage of transcript regions, 10× Genomics focused more
on exonic and UTR regions, whereas the optimized snRandom-
seq covered more intronic regions (Figure S3B, Supporting Infor-
mation). These findings collectively indicate that the optimized
snRandom-seq technique maintains its previously (snRandom-
seq) demonstrated gene detection advantages when analyzing
small sample.

We further performed integrated analysis of two pairs of head-
to-head data and tumor cell annotation based on copy num-
ber variation (CNV). Similar to 10× Genomics, the tumor cells
identified by the optimized snRandom-seq showed significant
CNV differences on chromosomes compared to normal cells. In
this study, we directly labeled tumor cells based on CNV analy-
sis (Figures S4–S6, Supporting Information). Annotation of cell
types and their coverage by the two sequencing technologies
showed good consistency. Although 10× Genomics identified
more cell types, such as dendritic cells and plasma cells, their
proportion was relatively small and could be attributed to the dif-
ference in the starting sample amount (Figure 2E).

While both technologies identified a consistent number of
cell types, their proportions differed significantly. The 10× Ge-
nomics method captured more immune cells, whereas the op-
timized snRandom-seq identified more cancer cells (Figure 2E;
Figure S3C, Supporting Information). This discrepancy led to
differences in integration effects: 10× Genomics achieved bet-
ter integration by primarily capturing normal immune cells,
while optimized snRandom-seq’s integration was less effec-
tive due to the high heterogeneity of cancer cells, which may
also be attributed to differences between single-cell and single-
nucleus assays (Details are described in the Discussion sec-
tion). Nevertheless, optimized snRandom-seq effectively inte-
grated normal cells such as T cells and endothelial cells, indi-
cating no sample bias in cell capture (Figure S7, Supporting
Information).

Marker gene expression dot plots validated the annotation ac-
curacy of both technologies (Figure 2F). Differential gene expres-
sion analysis revealed highly specific DEGs with minimal cross-
contamination (Figure S8, Supporting Information), and GO en-
richment analysis confirmed cell-type-specific pathways, such as
B cell receptor signaling in B cells, with a high overlap in en-
richment results (Figure S9, Supporting Information), support-
ing the reliability of optimized snRandom-seq.

Interestingly, the optimized snRandom-seq still identified sev-
eral lncRNAs specifically expressed in cancer cells and associated
with cancer development and progression (Figure 2G; Tables S3
and S4, Supporting Information). While lncRNAs play critical
roles in cancer, their expression in the tumor immune microen-
vironment (TIME) is largely unexplored due to their cell type-
specific nature and the lack of specific annotations.[21] Our results
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Figure 2. Comparison of the optimized snRandom-seq and 10× Genomics technologies based on paired-sample analysis. A) Violin plots and boxplots
of relative expression of five artefactual stress-associated gene expression signatures. B) Read distribution along the transcript body in different samples.
C) Counts of different RNA biotypes detected in each sample. D) A petal diagram was used to illustrate data for protein-coding genes and long noncoding
RNAs detected by 10× Genomics and optimized snRandom-seq. The shared number of features between samples is represented in the center, while
the total number of features detected in each sample is indicated at the edges. E) UMAP visualization of integrated clustering results of FFPE and
fresh biopsy samples, with cell type annotation information. F) A dot plot is used to illustrate annotation of marker genes in different cell types. G)
Identification of cancer cell-specific expression of lncRNAs using optimized snRandom-seq.
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provide new insights into clinically relevant lncRNAs in malig-
nant cells within the TIME.

2.3. Performance of the Optimized snRandom-Seq in FFPE
Puncture Samples of Six Common Cancer Types

2.3.1. Overall Performance

To further validate applicability of the optimized snRandom-seq
technology to multiple tumor tissues, we selected FFPE sam-
ples from six types of cancer for the optimized snRandom-seq
(Figure 1F; details of the sample information can be found in
Table S5, Supporting Information). These six cancer types in-
cluded lung cancer (LUCA, 1 sample), liver cancer (LICA, 3 sam-
ples), kidney cancer (KICA, 1 sample), thyroid cancer (THCA, 3
samples), pancreatic cancer (PACA, 2 samples), and breast can-
cer (BRCA, 3 samples) (Figure 1F). After quality control, 17,830
cells for BRCA, 6,527 cells for KICA, 31,385 cells for LICA, 8004
cells for LUCA, 15 098 cells for PACA, and 20 755 cells for THCA
were assessed by the optimized snRandom-seq (Figure 3A). Sim-
ilar to previous samples, the median UMI detection for the 13
samples was ≈1500, and the median gene detection was 1000-
2000. Mitochondrial content was low (< 3%) in most samples,
indicating high data quality (Figure S10A, Supporting Informa-
tion). All 13 samples showed a median of over 80% unspliced
transcripts, consistent with prior results, due to our focus on
nuclear RNA and the use of random primer amplification for
even transcript coverage (Figure S10B,E, Supporting Informa-
tion). Most reads mapped to exonic regions, with some to inter-
genic and UTR regions (Figure S10C, Supporting Information).
The detection of substantial lncRNA and a consistent number
of protein-coding genes across samples confirm the reliability
of the optimized snRandom-seq (Figure S10D, Supporting Infor-
mation).

To facilitate subsequent annotation integration, we first per-
formed CNV analysis and tumor cell identification for the 13 can-
cer samples. The results showed that the data of each sample gen-
erated by the optimized snRandom-seq can be used to clearly dis-
tinguish tumor cells from normal cells, with tumor cells exhibit-
ing significant copy number variation information (Figure S11,
Supporting Information). Furthermore, we conducted an inte-
grated analysis of the 13 sample datasets; the final clustering re-
sults are shown in Figure 3B. Many specific cell populations in
different cancer types were identified (Figures S12 and S13, Sup-
porting Information); we also detected a certain number of in-
tegrated and rational populations, such as Cluster #2 and Clus-
ter #3, which exhibited good homogeneity and were present
in a certain proportion in different cancer types (Figure 3C,D;
Figures S12 and S13, Supporting Information). Based on marker
genes (Figure 3E), cells were annotated as macrophages and en-
dothelial cells. The specific populations were mainly composed
of tumor cells identified through CNV analysis in the integrated
clustering results (Figure 3F; Figure S14, Supporting Informa-
tion). For example, Cluster #0 was composed of tumor cells iden-
tified in samples LICA-1 and LICA-3; the tumor cells of sample
LICA-2 were grouped into Clusters #7 and #19. The results po-
tentially indicate the heterogeneity of tumor cells among differ-
ent samples from the same cancer type.

2.3.2. Cellular lncRNA Heterogeneity Within the Six Common
Cancers

We focused on identifying differentially expressed lncRNAs in
addition to a large number of differentially expressed protein-
coding genes. Figure 4A shows a dot plot of the top two differen-
tially expressed lncRNAs identified for each cluster. The diagonal
pattern in the graph clearly indicated the expression specificity
of lncRNAs in the cluster. In addition, some lncRNAs have been
previously reported,[22,23] such as LINC00958 in liver hepatocel-
lular carcinoma (HCC), which sponges miR3619-5p to upreg-
ulate expression of liver cancer-derived growth factor (HDGF),
promoting HCC progression and adipogenesis, and directly acts
on NUDT19 to activate the mTORC1/P70S6K signaling path-
way. Overexpression of NUDT19 and the mTORC1 activator
MYH1485 reverse the inhibitory effects of LINC00958 silencing
on HCC proliferation, migration, and epithelial-mesenchymal
transition (EMT),[22,23] and a large number of newly identified
lncRNAs that are specifically expressed in tumor groups were
found (Figure 4A; Table S6, Supporting Information). To further
confirm the cell-specific lncRNAs’ function, we adopted LncPairs
algorithm for lncRNA-mRNA interactions annotation.[24] As
noted in Figure 4B, our study uncovered many lncRNA-mRNA
pairs, e.g. 5482 pairs specific to tumor clusters in breast cancer
– the top number to other cell types and cancer forms. Within
the immune microenvironment, granulocytes and macrophages
presented high numbers of these pairs, specifically counting 637
and 579 respectively. Interpreting from the heat map, it is evident
that distinct cell clusters express unique lncRNA-mRNA pairs,
displaying a striking cluster specificity further illustrated and ex-
plored in Figure 4C. The LncPairs results independently vali-
dated the functionality of identified lncRNAs in lncRNA-mRNA
interactions and cancer regulations. These lncRNAs can serve as
the basis for future research and provide a deeper understand-
ing of the differences in cell types and molecular mechanisms
among different cancer types.

2.3.3. Recurring Expression Programs of Common Cancers

Pan-cancer analysis can provide an accurate understanding of
heterogeneity and commonality across different cancer types.
To explore the existence of recurring expression programmes
among six types of cancer, we performed nonnegative matrix
factorization (NMF) on tumor cells identified from the 13 sam-
ples. We repeated the NMF analysis with distinct parameters
to identify robust expression programs, each defined by the top
50 genes based on NMF scores (Table S7, Supporting Informa-
tion). Overall, we detected 57 robust expression programmes
across all cancer types and 3–8 programmes in individual sam-
ples. The NMF programmes were subjected to hierarchical clus-
tering based on their shared genes, which highlighted the pres-
ence of multiple recurrent heterogeneous programs (RHPs) of
gene expression across multiple samples (Figure 4D). Although
we used a limited number of only 13 samples, ultimately, we iden-
tified three RHPs (stress, EMT/invasion, and stemness) based
on functional enrichment analysis of the top 50 genes represent-
ing each RHP (Figure 4D; Figure S15, Supporting Information).
Stress and stemness programmes were observed in all six can-
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Figure 3. Performance of the optimized snRandom-seq in FFPE puncture samples of six cancer types. Samples of liver cancer, lung cancer, kidney cancer,
breast cancer, pancreatic cancer, and thyroid cancer were used. A) The number of single cells detected across the six types of cancer. B) UMAP plot of
the integrated results of the 13 samples across six types of cancer. C) UMAP plot of the integration status of the different types of cancer, highlighting
similarities and differences between clusters. D) The bar graph displays the proportional distribution of cell clusters across different types of cancer. E)
Incorporate dot plots to depict the expression profiles of marker genes across different cell types. F) The UMAP plot displays the location of nauseating
tumor cells identified in the above clustering results, with the corresponding evolutionary tree of tumor cells based on CNV information plotted on the
right side.
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Figure 4. Pancancer analysis of optimized snRandom-seq data for 13 cancer samples of six common cancers. A) A dot plot was used to show expression
of the top 2 ranked lncRNAs among the different clusters, as identified as differentially expressed genes. B) The LncPairs algorithm operates to pinpoint
lncRNA-mRNA pairs that are specific to each cell type, quantifying the distinct pairs within each. C) A heatmap is utilized to visually compare and display
the cell-specific lncRNA-mRNA pairs across various cell types, with a special emphasis on denoting the three most prominent lncRNA-mRNA pairs.
D) Pairwise similarities between nonnegative matrix factorization (NMF) programmes identified across all the cancer samples analyzed and ordered
by hierarchical clustering. Three clusters or recurrent heterogeneous programmes (RHPs) are indicated by squares and numbers. E) A heatmap shows
relative expression of genes from three programmes across all cells in breast cancer sample 1 ordered by hierarchical clustering. NMF programmes are
annotated (right), and some selected genes are indicated (left).
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cer types. The EMT/invasion programme was only present in
four cancer types, including lung cancer, breast cancer, pancre-
atic cancer, and thyroid cancer. However, compared to the stress
programme and EMT/invasion programme, the stemness pro-
gramme showed greater variability across different cancer types.
This suggests a certain degree of similarity in the stemness ac-
tivity of tumor cells among different cancer types, with the sim-
ilarity being lower than their EMT/invasion or stress response
characteristics.

A heatmap clearly shows distinct cell populations in the
sample, with tumor stem-cell-specific features and strong in-
vasive ability caused by the epithelial-mesenchymal transition
(Figure 4E). Moreover, we found some known stemness-related
genes among the top 50 genes representing the stemness pro-
gramme, such as the transcription factor GATA3, which has been
identified as a robust predictor of clinical outcome in human lu-
minal breast cancer. Within the mammary gland, GATA3 plays a
critical role in the differentiation and commitment of luminal ep-
ithelial cells.[25] Interestingly, we also identified several lncRNAs
among the top 50 genes representing the stemness programme,
which may serve as a basis for investigating the role of lncRNAs
in breast cancer stemness.

Taken together, we found that the data obtained from the op-
timized snRandom-seq processing of small samples of different
cancers retains the characteristics of the cancer itself. After pan-
cancer NMF analysis, the main features of cancer, such as stem-
ness and EMT/invasion, can be obtained, and genes or even lncR-
NAs that are commonly or specifically associated with them in
different types of cancers can be identified.

2.4. Identification of Pseudo-Progression of Immunotherapy
Based on Dynamic Spatiotemporal Heterogeneity

Here, we selected seven core needle FFPE specimens both pre
and post immunotherapy, from the identical lesion in three col-
orectal liver metastasis (CLM) patients (Figure 5A). In the seven
samples, three samples from Patient 1 were obtained from two
different lesions, while four samples from Patient 2 and Patient
3 (two samples obtained from a same lesion of each patient), re-
spectively. After treatment, Patient 1 showed effective response
with tumor shrinkage on imaging. Patients 2 and 3 were assessed
as having progressive disease (PD) according to RECIST criteria,
with substantial tumor enlargement on imaging (Figure 5D). Pa-
tient 3 decided to continue immunotherapy because the tumor
marker carcinoembryonic antigen (CEA) was on a downward
trend and subsequently experienced partial response (PR). We
inferred developmental trajectories of these tumors at the single-
cell level pre- and post-treatment, and identified the pseudopro-
gression of immunotherapy in one of the patients, accordingly.

From the UMAP plot in Figure 5B, it is evident that the three
samples from Patient 1, aside from hepatocytes and tumor cells,
show considerable consistency. The CNV results by Copykat fur-
ther validate the accuracy of tumor cell identification, with greater
CNV variation observed in Clusters 0, 3, 5, and 13. Interestingly,
Cluster 10 is specific to Lesion 2, while Cluster 18 is unique to
Lesion 1, indicating that tumors from different lesions exhib-
ited some heterogeneity. Using pseudotime analysis (Figure 5C),
we reconstructed the developmental trajectories of tumor cells in

Patient 1 before and after treatment, showing progression from
higher malignancy (Clusters 0, 3, 5, 13) to lower malignancy
(Clusters 10, 18, 20). Notably, the two lesions displayed differ-
ent developmental trajectories. The results not only confirm the
image-based efficacy evaluation of Patient 1 from a single-cell ge-
nomics perspective, but also underscore the reliability of the op-
timized snRandom-seq technology.

For Patients 2 and 3, where lesions were enlarging, we con-
ducted similar and more detailed analyses. Based on anno-
tation results, we identified distinct cell populations, includ-
ing endothelial cells, T cells, and macrophages, among others
(Figure 5E). Subsequently, using the CNV score for tumor cell
detection, we classified clusters #0, 1, 2, 4, 6, 7, 9, and 14 as neo-
plastic cells in Patient 2, and clusters #0, 1, 2, 3, 4, 6, 8, and
11 as tumor cells in Patient 3 (Figure 5E; Figure S16A,B, Sup-
porting Information). Intriguingly, there were major changes in
the composition of tumor cells in both patients before and after
treatment. Certain tumor cell clusters were specifically present
in the post-treatment samples, suggesting a potential transfor-
mation during immunotherapy (Figure 5E). For instance, in Pa-
tient 2, we found that clusters #2 and #6 were exclusive in post-
treatment samples, whereas, in Patient 3, clusters #4 and #8 were
specifically found in post-treatment samples, and cluster #6 was
present in pre-treatment samples. We also conducted DEG analy-
sis for identified clusters (Tables S8 and S9, Supporting Informa-
tion) and performed enrichment analysis using MSigDB which
efficiently depict intrinsic and extrinsic cancer pathogenesis, en-
compassing cellular signaling, inflammation, proliferation, and
metabolism.[26] Based on the heatmap result, malignant cell clus-
ters, particularly Cluster #0, 1, 4, 7, and 14 in Patient 2, and Clus-
ter #0, 1, 2, 3, and 11 in Patient 3, were notably enriched in hall-
mark gene sets. Interestingly, some clusters, like Cluster #2 and
6 in Patient 2 and Cluster #8 in Patient 3, exhibited opposing en-
richment posttreatment (Figure S17, Supporting Information),
suggesting potential drug response phenomena.

To further explore the changes in malignant cells during treat-
ment, we performed pseudotime analysis on the identified ma-
lignant cells in Patient 2 and Patient 3, visualizing their develop-
mental trajectories (Figure 5F; Figure S18, Supporting Informa-
tion). In Patient 2, malignant cells exhibited prominent branch-
ing, with clusters #0, 4, and 14 at the trajectory start point. One
branch progressed toward clusters #1, 7, and 9, another towards
cluster #6, which almost exclusively emerged post-treatment,
suggesting novel tumor cell alterations. Further characterizing
tumor cell features, we divided the tumor cells into three tu-
mor subclones using the CNV matrix (Figure 5G). Overall, post-
treatment, subClone2 disappeared, and subClone3 proportion
increased (Figure 5G). Interestingly, subClone1 comprised post-
treatment Cluster #0 cells and pre-treatment Clusters #4 and
14, primarily positioned at the early trajectory stages, while sub-
Clone2 mainly contained pre-treatment Clusters #1, 7, and 9.
SubClone3 consisted of post-treatment Clusters #1, 2, 6, indi-
cating that subClone2 and 3 occupied the developmental tra-
jectory’s two branches, representing two developmental direc-
tions of tumor cells. From the CNV heatmap, subClone2 and
3 exhibited clearer CNV than subClone1 (Figure 5G), reveal-
ing the continued malicious progression of tumor cells in Pa-
tient 2 post-treatment. Similarly, we conducted the same anal-
ysis for Patient 3. Unlike Patient 2, only minor branches were
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Figure 5. Temporal heterogeneity of tumor cells in pre- and post-treatment FFPE biopsy samples from two patients. A) Schematic diagram of the
experimental design, where three samples from Patient 1 were derived from two different lesions, while four samples from Patients 2 and 3 were
derived from the same lesion (two sample from each patient), respectively. B) The UMAP plots display the clustering results for the three puncture
samples for Patient 1, with the first three UMAP plots corresponding to these samples. The UMAP plot in the lower right corner shows the CopyKat
CNV identification results for tumor cells. C) The UMAP plot illustrates the developmental trajectory of tumor cells of Patient 1, with the heatmap in
the lower left showing CNV variation in cells; darker colors indicate greater CNV variation. D) Imaging results from the same lesion before and after
treatment in two patients. E) UMAP plots were generated for patients before and after treatment, highlighting the clustering and annotation of samples
from two patients and the similarities and differences between clusters after treatment. For example, Clusters #2 and #6 were only present in Patient
1’s samples after treatment; Cluster #4 was only present in Patient 2’s samples after treatment. F) We performed pseudotime analysis on tumor cells
to demonstrate their differentiation trajectory in the two patients. G) The circular phylogenetic tree displays the lineage and subclonal information of
tumor cells. The adjacent bar graph shows the proportion of cell cluster composition corresponding to each subclone. Simultaneously, the stacked plot
in the lower right corner illustrates the trend in the proportion of tumor cell subclones before and after treatment, as determined by serial biopsies. The
heatmap displays the copy number variations of each tumor subclone. Red represents gain, blue represents loss.
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observed in Patient 3 (Figure 5F), with most malignant cells pri-
marily clustering along the dominant developmental trajectory,
culminating in clusters #4 and #8 (Figure S18, Supporting Infor-
mation). Based on prior hallmark gene-set enrichment analyses,
Cluster #8 showed no enrichment of any cancer-related features
(Figure S17, Supporting Information), indicating the malignant
cell subgroups in Patient 3 responded to treatment, progressing
towards benignancy. Furthermore, to validate our identification
results, we conducted FISH verification on defined marker genes
of the most significantly altered cluster #4 in Patient 3 (Table S9,
Supporting Information), shown in Figure S19 (Supporting In-
formation). Post-treatment samples displayed significantly in-
creased expression in multiple regions. Concurrently, through
subclonal analysis, subClone1 disappeared post-treatment, indi-
cating that almost all malignant tumor cell clusters responded
to therapy (Figure 5G). In comparison to subClone1, the new
subclones found post-treatment, subClone2 and SubClone3, dis-
played fewer CNVs, especially subClone3 (Figure 5G). This re-
veals that while the tumor lesion of Patient 3 was enlarged on
imaging, but in fact, the tumor cells were responsive to treatment
and progressing towards benignancy, which is a pseudoprogres-
sive phenomenon of immunotherapy.

Through trajectory construction, we were also able to ob-
tain potential molecular mechanisms of tumor cells during de-
velopment, such as identification of development-related genes
(Figure S20, Tables S10 and S11, Supporting Information). This
gene information will provide a reference for clinical treatment.
Similar to previous findings, capture of lncRNAs by the opti-
mized snRandom-seq will also provide more information on
lncRNAs related to tumor development. In conclusion, the re-
sults demonstrate that the optimized snRandom-seq can be used
in time-series analysis of tumor cells.

3. Discussion

In this study, to address the challenge of low sample quantity
in minimal puncture FFPE specimens, we upgraded the previ-
ously developed snRandom-seq, which offers several advantages
over widely used 10× genomics technology. First, by utilizing pre-
indexing to label multiple samples and multiplexed detection, we
addressed the low input issue of single puncture sample. Second,
by incorporating the use of random primers,[17–20] we compre-
hensively and sensitively captured total RNA from a single nuclei,
overcoming the technical difficulty of achieving single-nucleus
sequencing of FFPE samples due to RNA fragmentation.

To our knowledge, this is the first study to compare the opti-
mized snRandom-seq and traditional 10x Genomics, based on
three puncture FFPE matched with fresh samples. Our study
demonstrated that the optimized snRandom-seq also has advan-
tages in capturing noncoding RNAs, such as lncRNAs and miR-
NAs. Many of the identified lncRNAs in the manuscript have
been validated in prior research studies. For instance, the re-
search conducted by Ma et al.[27] elucidates the negative cor-
relation between the overexpression of LINC02163 in CRC tis-
sues/cell lines and patient prognosis. Concurrently, it reveals that
attenuating LINC02163 expression dramatically reduces CRC
cells’ proliferation and metastasis. In a similar vein, Tian et al.[28]

observed elevated LINC02418 levels in human cancer speci-
mens compared to surrounding healthy tissues. They associ-

ated this high expression with poor patient prognosis, suggest-
ing that LINC02418 enhances CRC progression by augmenting
tumor growth and cellular movements. Counterbalancing these
oncogenic lncRNAs are tumor-suppressing lncRNAs, such as
LINC01146, which has shown a unique expression pattern. Over-
expression of LINC01146 has shown to inhibit tumor growth,
whereas its reduction encourages tumor growth.[29] Different
cancers, like lung, liver, and breast cancers, have shown a con-
nection with either the promotion or inhibition of lncRNAs.[30–32]

Owing to this, lncRNAs have been identified as potential can-
cer biomarkers.[33] The expression and variability of lncRNAs at
the single-cell level, however, remain unclear. The development
of a new database (http://rna.sysu.edu.cn/colorcells/) address-
ing this issue by cataloging specific lncRNAs based on single-cell
RNA data is hence a remarkable leap.[34] The recent advent of the
optimized snRandom-seq’s ability to account for lncRNAs abun-
dance will further deepen our understanding and potentially de-
velop novel noncoding RNA strategies to improve cancer treat-
ment response.

Existing research has indicated a proportional discrepancy be-
tween single-nucleus and single-cell RNA sequencing in cellu-
lar composition, particularly showing a relative depletion in im-
mune cells and an increased proportion of tumor or substantive
cell.[35,36] Consistent with previous results, we captured a higher
proportion of tumor cells and a smaller proportion of immune
cells through nuclear extraction, in contrast to the fresh tissues
needed for 10× Genomics. Compared to the proportion of tumor
cells determined based on morphological observation through
staining, it appears that nuclear extraction may better reflect the
true cellular composition of the tissue. It has been well docu-
mented that different cell types exhibit different dissociation ef-
ficiencies during the dissociation process, with fibroblasts and
endothelial cells usually being more embedded in the extracel-
lular matrix and basement membrane, making them more diffi-
cult to dissociate.[37] At the same time, some sensitive cells may
be fragmented due to excessive dissociation, likely resulting in
the inability to effectively capture all cell types of a tissue during
the dissociation process, which will greatly affect the accuracy of
results. However, this is still an open question and needs more
evidence in the future.

Due to the characteristics of the puncture technique itself, the
sample volume obtained is often very small, and sampling error
and individual variations can lead to differences in the cellular
composition of samples from the same tissue,[38] as shown in our
results for samples from three different CLM patients. Compared
to Patient 3, more liver hepatocyte cells and immune cells were
captured for Patient 2, and the quantity of immune cells was neg-
ligible to the point of being inconsequential. However, through
the optimized snRandom-seq data, we were able to capture a large
number of tumor cells in samples from multiple types of cancer,
which can be used for studies on tumor heterogeneity, drug sen-
sitivity or resistance, as well as other research areas, and provide
assistance in formulating treatment plans. Despite the natural
shortcoming of sampling error with puncture samples, analyzing
the temporal heterogeneity of dynamic repeated puncture of the
same sample and the spatial heterogeneity of different lesions at
the same time point is still the best strategy for studying acquired
drug resistance during treatment of patients with advanced tu-
mors. The developmental trajectories of tumor cells in the three
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CLM patients during treatment and the pseudotime analysis re-
sults were consistent with the clinical outcome, which was help-
ful to identify the pseudo-progression on imaging. As we know,
the “pseudo-progression” phenomenon poses a huge challenge
for immunotherapy, as tumors may seem to expand and clini-
cians have misconceptions about the efficacy, leading to a failure
of subsequent treatment decisions. Therefore, it is expected to
provide personalized precision medicine guided by the analysis
of tumor biological heterogeneity, and make up for the shortcom-
ings of traditional imaging in judging the pseudo-progress of im-
munotherapy.

There were some limitations in our research. Notably, the
number of samples in our pan-cancer and pseudotime analy-
sis was limited. We mainly captured obvious features between
different cancer types, such as stemness and EMT. Meanwhiles,
in our pseudotime analysis, the more samples different lesions
and time points are used, the better we can identify the dynamic
changes that the tumor presents at the molecular level during
treatment. It is expected that the aforementioned limitations will
be addressed in our next investigation in the future, and the
snRandom-seq will play a great role in the study of the spatiotem-
poral heterogeneity of tumor.

4. Experimental Section
Experimental Model: 293T cells and 3T3 cells were obtained from Pro-

cell Life Science & Technology. The collection and study of human samples
in this research was approved by the Research Ethics Committee of the
First Affiliated Hospital, Medical School of Zhejiang University (Approval
No.: IIT20220893A). Prior to the initiation of this study, informed written
consent was obtained from all participants or their immediate relatives.
All FFPE biopsy samples of clinical human cancers were provided by the
First Affiliated Hospital, Medical School of Zhejiang University. The clinical
details of the samples can be found in Table S5 (Supporting Information).

Species Mixture Experiment: HEK293T cells and 3T3 cells were cultured
in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10%
(v/v) heat-inactivated foetal bovine serum (FBS) at 37°C in a 5% CO2 in-
cubator and passaged every two days. For the species mixture experiment,
the cells were harvested and washed three times with phosphate-buffered
saline (PBS) by centrifugation at 4 °C and 600 × g for 3 min. The cells were
lysed using precooled nuclei lysis buffer (1X PBS with 0.1% Nonidet P-40
(NP-40) and 1 U μL−1 RNase Inhibitor) by incubating at 4 °C for 5 min. The
fresh nuclei were then washed three times and fixed by adding 1 mL of 4%
paraformaldehyde (PFA) to PBS and incubating at room temperature for
15 min. The PFA was then removed by centrifugation at 600 × g for 3 min,
and the nuclei were washed three times with 1 mL of precooled wash buffer
(1X PBS with 1 U μL−1 RNase Inhibitor). The nuclei were permeabilized
by adding 500 μL of 0.1% Triton X-100 diluted in precooled wash buffer
and incubated at 4 °C for 5 min. Then, 1 mL of wash buffer was added di-
rectly to the nuclei, which were washed three times with 1 mL of precooled
wash buffer. The HEK293T nuclei and 3T3 nuclei were counted and mixed
equally. The mixture was then processed for single-nucleus RNA-seq ac-
cording to the following snRandom-seq protocol.

Isolation of Tissue Cells: Human liver cancer tissue samples were dis-
sected and minced and then placed in digestion media consisting of Lib-
erase DL (400 μg mL−1) and elastase (100 μg mL−1) in RPMI (Gibco
72400120). The samples were partially dissociated using a gentleMACS
Dissociator, followed by a 30-minute incubation in a Nutator at 37 °C, and
then dispersed to a single-cell suspension. The samples were then treated
with processing buffer (5% foetal bovine serum in PBS) and DNAse I (100
μg mL−1) and incubated at 37 °C for 5 min before being cooled to 4 °C
for the remainder of the protocol. The cells were filtered through a 100 μm
filter and pelleted. The buffer was inactivated by adding excess processing

buffer, and the cells were filtered through a 70 μm strainer and pelleted
again before being resuspended.

scRNA-Seq Library Construction: Approximately 18 000 cells were
loaded onto a Single Cell A Chip and processed using Chromium Con-
troller and Chromium Single Cell 3.0 Reagent Kits v2 (10× Genomics,
Pleasanton, CA) to generate single-cell GEMs (gel beads in emulsion).
The resulting scRNA-seq libraries were prepared using Chromium Single
Cell 3.0 Gel Bead and Library Kit (P/N #120236, 120237, 120262; 10x Ge-
nomics). The DNA library was qualitatively analyzed with an Agilent 2100
Bioanalyzer, and the concentration was measured by a Qubit (Invitrogen).
The libraries were sequenced using an Illumina NovaSeq sequencer (Gen-
ergy Biotechnology Shanghai). The raw scRNA-seq dataset consisted of
Read1, Read2, and i7 index reads, with the 16 bp 10x barcode and 10 bp
UMI sequence contained in 26-bp Read1; 98-bp Read2 contained the se-
quence of the cDNA fragment.

Single Nucleus Isolation from FFPE Puncture Samples: FFPE samples
were cut from paraffin blocks with a size of 20 μm per section and 3 sec-
tions per sample and then washed twice with 1 mL of xylene at room tem-
perature for 5 min each to remove the paraffin. Considering the low start-
ing material of some samples, we reduced the number of washes to 1 for
specific samples. As shown in Table S1 (Supporting Information), we per-
formed only one wash for lung cancer, pancreatic, and thyroid samples.
The samples were then gently dehydrated by immersing them in a series
of graded ethanol solutions (from 100% pure ethanol to 30% ethanol). The
samples were washed twice with precooled wash buffer (125 μm glycine,
2 mM MgSO4 in 3X SSC buffer) and homogenized with a Dounce ho-
mogenizer on ice in the presence of precooled lysis buffer, as shown in
Table S1 (Supporting Information). We used different lysis buffers and dif-
ferent lysis times for different samples. The homogenization times were
also adjusted according to the sample type. After homogenization, the
Doune homogenizer was washed with 1 mL lysis buffer, and 100 μL of
10 mg mL−1 protease K was added to the lysis buffer and incubated at
37 °C for 5 min. The separated nuclei were filtered through a 20 μm cell
strainer and washed twice with wash buffer. Equal portions of nuclei were
stained with DAPI (4’,6-diamidino-2-phenylindole), loaded into a blood
cell counter, and observed under an inverted fluorescence microscope.

snRandom-Seq Library Preparation: To achieve sufficient numbers of
cells, a preindexing step was integrated into the reverse transcription step
based on published scifi-RNA-seq protocols. The extracted nuclei were la-
belled with barcoded cDNA using preindexing random primers and then
merged prior to subsequent steps. Then, qualified single nuclei were sub-
jected to single-nucleus RNA-seq processing according to a previously
published snRandom-seq protocol.[17] Detailed procedures, including the
volumes of lysis buffer and permeabilization buffer, reaction system, and
reaction programme, are provided in the supplementary materials of the
previous publication.

Data Analysis: Preprocessing of 10× Genomics Data: Sequences from
NovaSeq analysis were demultiplexed using bcl2fastq (version 2.20.0.422)
to convert BCL files to FASTQ files. A reference for GRCh38 was created
following the Cell Ranger (version 6.0.1) protocol. Gene expression matri-
ces for downstream analyses were calculated using the ‘count’ function of
Cell Ranger and default parameters.

Preprocessing of snRandom-Seq Data: First, the primer sequences and
extra nucleotides generated in the dA-tailing step were trimmed from the
raw sequencing data. Then, for each Read1, we extracted the UMI (8 nt)
and cell-specific barcode (30 nt) and merged the sorted barcodes, which
were uniquely assigned to the same acceptor barcode with a Hamming dis-
tance of 2 nt or less. Read2 was generated into a gene expression matrix
by the STARsolo module in STAR (2.7.10a) with reasonable parameters. To
determine the number of nuclei in each sample, we plotted a scatterplot
of log10(genes) for each possible barcode and used the position of the
minimum of the maximum log10(genes) value as the threshold: only bar-
codes with gene counts above this threshold were used for downstream
analysis.

Clustering: The gene expression matrix generated from barcode filtering
excluded mitochondrial RNA and ribosomal RNA. Subsequently, single-
nucleus RNA sequencing (snRNA-seq) data analysis and visualization
were performed using the Seurat v4 toolkit. The workflow included prepro-
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cessing, integration, visualization, clustering, cell type identification, and
differential expression detection. Nuclei with fewer than 200 genes are fil-
tered out, as well as genes detected in less than 3 nuclei. To integrate the
snRNA-seq dataset, the sctransform function in Seurat was employed for
count normalization, and canonical correlation analysis (CCA) was used
for integration. For each sample, 4000 anchors were determined, and the
snRNA-seq dataset was integrated with the IntegrateData function using
50 dimensions. The integrated dataset was constructed as a shared near-
est neighbour (SNN) graph through principal component analysis (PCA),
FindNeighbours with 50 PCs, and FindClusters with a resolution of 0.5.
Clustering was visualized using uniform manifold approximation and pro-
jection (UMAP), which was implemented in Seurat. The main components
in Seurat were used to manually determine the cell type identity of each
cluster based on a published list of marker genes. The FindAllMarkers
function in Seurat was utilized to identify the marker genes, and filter-
ing conditions (only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)
were applied to ensure consistency. The stress signature scores were cal-
culated using AddModuleScore, with genes derived from Van et al., 2017
and Denisenko et al., 2020.[37,39]

CNV Analysis and Identification of Tumor Cells: As there was no corre-
sponding adjacent normal tissue among our samples, we utilized Copy-
KAT (Copy Number Variation and karyotype analysis in Tumors[40]) soft-
ware to distinguish malignant cells from normal cells by calculating the
copy number variation (CNV) level for each cell. This software clustered
the processed UMI data and first selected cells with high confidence in
diploidy. Then, hierarchical clustering was used to identify tumor cells with
significant differences from normal cells. Nonsignificant genomes were
identified one by one using a Gaussian mixture model (GMM). Ultimately,
gene expression profiles of malignant and normal cells were obtained. In
addition to the automated identification of malignant cells by CopyKAT,
we calculated a CNV score to aid in identifying malignant cells. The CNV
score of each cell was calculated as the quadratic sum of CNV regions.[41]

Pseudotime Analysis: In this study, we utilized the Monocle (v.2.8.0)
package to perform a comprehensive analysis of cell differentiation and
fate determination.[42] To explore related clusters, we extracted the sub-
set of raw data with cluster information and used the ‘dispersionTable’
function to calculate the variance in each gene’s expression across
cells. Variable genes were selected based on the mean expression level,
and the data’s dimensionality was reduced to two components using
the ‘max_components = 2, method = DDRTree’ parameter. We used
the ‘orderCells’ function to order the cells in pseudotime, and the re-
sulting trajectory was visualized using the ‘plot_cell_trajectory’ function
in Monocle. To specify the beginning of the trajectory, we ran ‘order-
Cells’ again and set the ‘root_state’ argument. We then selected the
branch point to analyze branches in differentiation trajectories and used
BEAM to analyze pseudotime-dependent or branch-dependent genes. The
‘plot_genes_branched_heatmap’ function was used to visualize genes
that were significantly branch dependent.

Identification of lncRNA-mRNA Pairs: To accomplish the identification
of lncRNA-mRNA pairs, we employed the LncPairs algorithm.[24] The de-
tailed analysis steps are as follows: 1) A gene×cluster expression matrix
is constructed, using the top 2000 highest varying gene-based single-cell
expression matrix. Each gene expression is averaged based on clusters. 2)
The gene×cluster is then divided into two matrices, namely mRNAcluster
and lncRNAcluster. 3) The correlation between the two matrices – mR-
NAcluster and lncRNAcluster – is calculated. Further emphasis is placed
on lncRNA-mRNA pairs exhibiting a Pearson Correlation Coefficient (PCC)
that exceeds 0.85. 4) Using the residual lncRNA-mRNA pairs, the pairclus-
ter matrix is then built. 5) The Cosine similarity approach serves to distin-
guish the cluster-specific lncRNA-mRNA pairs. 6) Lastly, any pairs with a
similarity score below 0.95 are eliminated from the data set.

Enrichment Analysis: All genes that were found to be differentially ex-
pressed, including those enriched in specific clusters, were subjected to
pathway enrichment analysis using clusterProfiler.[43] The pathways that
showed high statistical significance were annotated to specific biological
processes.

In Situ Hybridization: Selection of the corresponding FFPE wax sec-
tions for validation purposes. The labeled DNA probes were hybridized

with the samples using the FISH in situ hybridization kit (Catalog No:
C007). After completion of the hybridization reaction, cell nuclei were
stained with DAPI. Fluorescence microscopy was used to observe the cells
at a wavelength of 340 nm, and the hybridization signals were observed at
a wavelength of 552 nm.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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