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snCED-seq: high-fidelity cryogenic enzymatic
dissociation of nuclei for single-nucleus
RNA-seq of FFPE tissues

Yunxia Guo1,2,5, Junjie Ma3,4,5, Ruicheng Qi3,5, Rongrong Ma2, Xiaoying Ma1,
Jitao Xu1, Kaiqiang Ye1, Yan Huang1, Xi Yang1, Jianyou Zhang2 ,
Guangzhong Wang 3 & Xiangwei Zhao 1

Recent advances have shown that single-nucleus RNA sequencing (snRNA-seq)
can be applied to formalin-fixed, paraffin-embedded (FFPE) tissues, opening
avenues for transcriptomic analysis of archived specimens. Yet, isolating intact
nuclei remains difficult due to RNA cross-linking. Here, we introduce a cryo-
genic enzymatic dissociation (CED) strategy for rapid, high-yield and fidelity
nuclei extraction fromFFPE samples and validate its utility with snRandom-seq
(snCED-seq) using male C57/BL6 mice. Compared with conventional approa-
ches, CED delivers a tenfold increase in nuclei yield with significantly reduced
hands-on time, while minimizing secondary RNA degradation and preserving
intranuclear transcripts. snCED-seq enhances gene detection sensitivity, low-
ers mitochondrial and ribosomal contamination, and increases overall gene
expression quantification. In Alzheimer’s disease studies, it distinguished two
astrocyte subpopulations, microglia, and oligodendrocytes, revealing cellular
heterogeneity. Additionally, snCED-seq identify major cell types in a single
50μm FFPE human lung section. Our results demonstrate that snCED-seq is
robust for FFPE specimens and poised to enable multi-omics analyses of
clinical samples.

High-throughput single-cell/nuclei RNA sequencing (scRNA/snRNA-
seq) methods have revolutionized the entire-field of biomedical
research1–3. scRNA/snRNA-seq has been highly successful at disease
mechanisms, discovering biomarkers to help stratify patients, and
identifying novel therapeutic targets as well as determining the impact
of drugs. However, fresh/frozen specimen procurement is not a stan-
dard clinical and diagnostic practice in most institutions, and fresh/
frozen samples cannot be obtained for certain sample types. Routine
formalin-fixed paraffin-embedded (FFPE) tissues are the most com-
mon archivable specimens, constituting a vast and valuable patient
material bank for clinical history4. Inevitably, the irreversible

modifications caused by formalin fixation on macromolecules in FFPE
samples alwaysmake it challenging formolecular biology applications.
The studies havemade great progress in transcription profiling in FFPE
samples by optimal RNA extraction methods5,6 or spatial in situ
profiling7. What’s more, the combinations of scRNA-seq and spatial
technologies have been applied to FFPE tissues. Currently, three
methods have been posted, snPATHO-Seq8, snFFPE-seq9, and
snRandom-seq10, provided optimized methods to isolate single intact
nuclei from FFPE tissues to perform snRNA-seq, which demonstrates
the feasibility of snRNA-Seq in FFPE tissues and unlocking possibilities
for these challenging samples. Accurate transcriptomic
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characterization of each cell in clinical FFPE specimens is believed to
provide a better understanding of cell heterogeneity and population
dynamics, thereby improving accurate diagnosis, treatment, and
prognosis of human disease. With the development of snRNA-seq
techniques for FFPE samples, there is growing interest in the use of the
vast archives of samples for diagnostic purposes.

The application of snRNA-seq in FFPE samples is premised on
obtaining superior nuclei. However, isolation of intact and high-quality
nuclei remains challenging due to RNA crosslinking, modification, and
degradation caused by formaldehyde fixation. The strategies of nuclei
preparation for FFPE tissues are longstanding and can date back to the
last century, but previous applications are only limited to DNA
content11, fluorescence in situ hybridization12,13, genome-wide associa-
tion studies14,15, and chromatin accessibility profiling16. Specifically,
nucleiweredissociatedbyhyperthermia of biological tissue sections in
protease solution, a technique that is sensitive to heating time and
easily destroys the nuclear membrane, resulting in the loss of nuclear
morphology. Moreover, prolonged exposure to enzyme buffers may
increase the permeability of the nuclear membrane, resulting in RNA
molecule leakage and adversely affecting snRNA-seq experiments
conducted in droplets. The current state-of-the-art snRNA-seq for FFPE
samples uses amechanical homogenizationmethod that is suitable for
frozen samples before, and combined with a hyperthermic enzyme
dissociation approach for nuclei preparation8–10. However, the homo-
genization of formaldehyde-fixed tissue poses challenges, leading to
the presence of debris in the resulting nuclei suspension, which
necessitates multiple filtration steps. This, in turn, affects the yield of
nuclei and may result in the loss of smaller nuclei. The presence of
tissue debris remains a challenge, introducing a higher amount of
ribosomal RNA (rRNA), which can affect sequencing data quality.
Therefore, the acquisition of high-quality nuclei from PFA-fixed or
FFPE samples will be an important basis for transcriptome study of
clinical samples.

To address these limitations, here we develop the cryogenic
enzymatic dissociation (CED) method—an efficient, high‑fidelity pro-
tocol for extracting nuclei fromFFPE tissues—and apply it to full-length
and total RNA single-nucleus sequencing of post-fixed brain samples.
We perform a comprehensive side-by-side comparison of nuclei iso-
lated by CED versus conventional methods, and across fresh-frozen,
PFA-fixed, and FFPE tissues, to demonstrate snCED-seq’s robustness in
FFPE samples. Despite optimizing traditional protocols, CED-derived
nuclei consistently outperformed conventional preparations in RNA
integrity, nuclei yield, genes and UMIs per nucleus, and overall gene
expression richness. We then apply snCED-seq to over 60,000 single
nuclei from the AD hippocampus, providing an in-depth analysis of
cellular heterogeneity in ADmice at single cell resolution. Additionally,
we profile all major cell types in a human lung micro-tissue. Our find-
ings establish snCED-seq as a reliable platform for transcriptomic
analysis of FFPE tissues from neurodegenerative diseases and suggest
its broader potential for unlocking valuable archived pathology spe-
cimens for clinical applications.

Results
Overview of the cryogenic enzymatic dissociation of nuclei for
post-fixed tissues
The acquisition of high-fidelity nuclei is a prerequisite for the research
and application of snRNA-seq for FFPE samples, and also a key factor
for its fullmining of transcriptional information. Since the last century,
nuclear preparation of FFPE tissues requires enzymatic dissociation at
high temperatures (HED) worldwide and are limited to non-
transcriptomic applications. We converted the idea of traditional
protocols of preparing nuclei from FFPE tissues, the factors that we
deemed pertinent to affect transcriptome analysis, such as dissocia-
tion temperature, reagents and time. We established a method of
nucleus preparation for post-fixed (paraformaldehyde fixed (PFA-

fixed) and FFPE) tissues, CED strategy. For this method, sarcosyl was
used instead of sodium N-dodecyl sulfate (SDS) or Triton X-100 as an
anionic surfactant to participate in the nuclei preparation, which was
more friendly to the nuclear membrane than the cell membrane, and
became the preferred component for nucleus isolation in CED
method. Moreover, proteinase K (PK) was used to digest proteins of
tissue to minimize background contamination. Our CED method
eliminates the need for ultracentrifugation through a sucrose cushion,
nor any filtration procedure,maximizing product retention, increasing
nucleation rates, and preventing nuclear membranes and cytoplasmic
contamination. Most importantly, the entire nucleus preparation
processwas carried out at low temperature,whichprotects the nuclear
membrane and maximally retains the RNA molecules within nucleus,
providing high-fidelity nucleus for snRNA-seq research of FFPE sam-
ples. In addition, by adjusting the experimental parameters, CED
method is not only suitable for tissue slides, but also has good com-
patibility with FFPE blocks, which is more in line with the application
needs of snRNA-seq in disease research. Next, the full-length total
RNAs within nuclei from frozen, PFA-fixed and FFPE brains were cap-
tured by random primers for snRNA-seq (snCED-seq), and the main
workflow of snCED-seq was shown in Fig. 1.

Thenuclei derived fromFFPEbrains preparedbyCEDmethodhad
intact morphology, good dispersion, high purity without agglomera-
tion (Fig. 2a). Confirmation of the integrity and dispersion of nuclear
morphology were also verified using epifluorescence microscopy
(Fig. 2b). Representative images of nuclei isolated from the hippo-
campus of three biological replicates showed much less debris and a
size distribution was centered around 6–8 µm (Supplementary Fig. 1a),
slightly smaller than normal frozen brain nuclei17, presumably due to
the tissue being fixed. Perhaps, CED method without cumbersome
filtering procedures, tiny nuclei could be preserved. Statistics showed
that at least a million levels of nuclei were obtained from each pair of
hippocampi (Supplementary Fig. 1a, bottom). The recent snRNA-seq
techniques for FFPE tissues based on randomprimer capture10 or gene
probe capture8 require the input of nearly onemillion nuclei to ensure
the output of about 10,000 nuclei. Our CED method effectively cir-
cumvents the shortcomings of the current two mainstream nuclear
preparation strategies, and can export nuclei stably without introdu-
cing more impurities and destroying the nuclear membrane.

We optimized the proteinase K (PK) concentration in the nuclear
dissociation system as measured by morphology and count of nuclei,
and found that the optimal concentration for HED was 0.4mg/mL,
while a higher was required in the CED formouse brain, whichwas due
to the reduced enzyme activity at low temperature (Fig. 2c). The nuclei
count gradually decreased with the extension of dissociation time at
37 °C (Fig. 2d), but was not observed in our method (Fig. 2e) and with
the intact morphology throughout. Since the release and dis-
appearance of nuclei occur simultaneously during enzyme dissocia-
tion, the traditional HEDmethod will force the preferentially obtained
nuclei to digest in enzyme solution, or damage the nuclearmembrane,
affecting nuclear yield, and this method was very sensitive to reaction
time, increasing the burden on the experimenter. In addition, since
molecular cross-linking makes it difficult to adequately homogenize
the tissue, a lot of impurities in the dissociative system that cannot be
removed, which must be removed by additional density gradient
methods combined with filtration, thereby reducing the nuclear yield.
The result reflected CED method could obtain more than 100,000
nuclei per gram of hippocampal tissue, which was more than 10 times
that of commercially nuclear extraction kits based on mechanical
methods (Fig. 2f and Supplementary Fig. 2j). Finaly, given the clinical
demand for snRNA-seq in a variety of organs, we also dissociated the
nuclei of multiple organs (Soybean size) by CED method, including
heart, liver, spleen, lung, stomach, intestines, kidney and pancreas
(Supplementary Fig. 2). We observed strong applicability of this
approach tomultiple organs, except to theheart and lung. Especially in
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spleen, intestines and kidney, with the tens of millions of nuclei
numbers, and despite their abundance and dense arrangement, they
remained independent, intact, and unaggregated (Supplementary
Fig. 2c, f and g). Despite the lower fitness of CED method in the heart
and lung, it still outperformed the mechanical homogenization (Sup-
plementary Fig. 2h). Subsequently, the nuclei were dissociated from
50μm paraffin scroll of human organs (organoid brain, lung, liver,
kidney and pancreas) (Supplementary Fig. 3). Due to the small size of
the brain organoids, we fixed them with PFA followed by OCT
embedding and ice cutting (Supplementary Fig. 3c). Although the
diameter of the brain organoid section was only about 2mm, more
than 30,000 nuclei could be dissociated from two sections (Supple-
mentary Fig. 3b, c), which was enough to prove the superiority of CED
method in the nuclei yield. Moreover, conventional wisdom suggests
that nuclei are not freeze-thaw friendly, forced to improve the
experimenter’s awareness of time control. Notably, nuclear envelope
rupture and aggregation did not occur in nuclei isolated by CED even
after one month of dry ice or storage at −80 °C. This property breaks
the restriction that the nucleus cannot be cryopreserved.

Without damage of RNA molecules in the nucleus from
CED method
The morphology of the nucleus ensures the independence of single
nucleus data, while the quality of RNA molecules in the nucleus can
ensure the high-quality output of snRNA-seq, which is also one ofmost
important factors affecting its application in transcriptome research.
PFA fixation of cells induces cross-linking between nucleic acids and
proteins, whereas the preparation of FFPE samples requires hours of
high temperature wax immersion, both result in RNA damage. How to
avoid secondary damage to RNAs during nuclear preparation is crucial

for snRNA-seq. We extracted RNA from nuclei to verify the harmless-
ness of CED method on RNA molecules. We first investigated how to
extract RNA molecules from the nuclei of fixed brains. The conven-
tional commercial RNA extraction kits are obviously not suitable for
the nuclei of PFA-fixed and FFPE tissues. We combined two lysis sys-
tems suitable for fresh or frozen tissue to extract RNA from cross-
linked nuclei. The effects of different heating conditions and protei-
nase K concentrations on RNA integrity (RIN) and RNA yield were
tested using Drop-seq buffer and commercial RNA extraction kits. We
found that PFA cross-linking was effectively reversed by incubation at
56 °C for 15min in standard Drop-seq lysis buffer (Supplementary
Fig. 1b), significantly shortening the heating time compared to the
reported18–20. PK has been reported to increase RNA yield18,19, but our
results showed that the PK concentration has little effect on RIN and
RNA yield (Supplementary Fig. 1c). In addition, weperformed the same
experimental exploration on lysis systems of other high-throughput
sequencing platforms, although comparable amount of RNA could
also be obtained, RIN values were low (2–4). This means that the
standard Drop-seq lysis buffer can be used directly as lysate for FFPE
nuclei at 56 °C.

The results showed that the CED method had almost no damage
to the RNAmolecules compared with the HEDmethod. The RIN values
of nuclei were basically consistent with the RIN values of PFA-fixed
tissues [PFA(4C) vs PFA-fixed section] (Supplementary Fig. 1d), but far
higher than those of the nuclei prepared by HED method [PFA(37 C)],
and even the RIN values of FFPE [FFPE(4 C)] nuclei were higher than
that of PFA(37C) (Fig. 2f). Then, the cDNA libraries were generated
from multiple tissues to truly reflect the quality of polyA_RNA. The
major peak size of cDNA for both PFA(4C) and FF(0h) was above
1200bp, while around 800bp for PFA(37C), which was even lower
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than that of FFPE(4 C) (Fig. 2h), which again confirmed that CED
method was less damaging to RNA molecules in the nucleus than the
HEDmethod. Notably, the RNA yield of nuclei isolated by CEDmethod
was consistent with that of freshly frozen (FF) samples, but much
higher than that of traditional methods (Fig. 2g), whichmight be a key
reason for limiting the application of snRNA-seq for post-fixed sam-
ples. We found that free RNA penetrates into the enzyme solution
during high-temperature dissociation process, resulting in the reduc-
tion of the amount of RNA in the nucleus (Supplementary Fig. 1e),
which we concluded to be a fatal shortcoming of the conventional
method. It has been reported that 3× or 5× SSC proved to be a good
medium for the prevention of cellular RNA degradation, but we found
that that the two types of buffers had almost the same effect on RNA

molecules (Supplementary Fig. 1f). In conclusion, CED method can
minimize the damage to the nuclear morphology and RNA molecules
of post-fixed brains.

Validation the nuclei quality derived from CED method by
snRNA-seq
We employed droplet-based snRNA-seq technology to capture total
RNA (M20 Genomics) and poly(A) RNA (10× Genomics). snRNA-seq
was performed on mouse hippocampus samples with three treatment
conditions: (1) fresh frozen tissue-the nuclei were extracted by
mechanical homogenization, capture by poly(T) [FF (10×)] and ran-
domprimers [FF(M20)]; (2) PFA-fixed tissue—the nuclei were prepared
by HED [PFA(37C)] and CED method [and PFA(4 C)] for snRandom-
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c Nuclei yield at different proteinase K concentrations. d, e Bar plots showing the
relationship between the nuclei numbers of the PFA-fixed hippocampus with the
dissociation time was isolated by HED (c) and CED (d) methods. fNuclear yield per

gram of hippocampal tissue, using CED and mechanical homogenization, respec-
tively. p <0.0001, two-sidedWelch’s t-test. g, h RNA integrity number (RIN) (g) and
total RNA yield (h) of RNA extracted from nuclei. i Representative peak values of
amplified cDNA in different groups. n = 3 biological duplication, and bars show
mean ± standard deviation (SD) (c–i). n = 3 times the experiment was repeated with
similar results (a, b). Source data are provided as a Source Data file (c–i).
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seq; (3) The nuclei of FFPE tissue were dissociated by CEDmethod and
capture by random primers [FFPE(4 C)/FFPE]. With snRNA-seq data of
frozen tissue for reference, the influence of high and low temperature
dissociation on sequencing data was evaluated to verify the fidelity
of nuclei obtained by the CED method, and also to evaluate the
applicability of CDE method in FFPE samples. Before microfluidic
encapsulation, the nuclei were imaged to confirm single nucleus
morphology and counted, and the results returned that the nuclei
numbers of all samples were about million level. snRandom-seq
requires a substantial amount of input material, millions of nuclei fully
meet the requirement of nuclear detection rate of 10,000. After bar-
coding and amplification, the fragment size of the cDNA fromFF(M20)
main peaked about at 700bp (Supplementary Fig. 4a). While the main
peak of cDNA from PFA(4 C) between 300 and 1000bps, and longer
than PFA(37C), which potentially due to RNA degradation (Supple-
mentary Fig. 4a). In addition, the next-generation sequencing (NGS)
library with equal input of cDNA showed the lowest library for
PFA(37C) (Supplementary Fig. 4b). The amount of cDNA and NGS
library from PFA(4C) was slightly higher than that in FFPE(4C) and
FF(M20), butmuchhigher than PFA(37C), indicating that CEDmethod
effectively blocked the leakage of nuclear RNA and almost maintained
the true level RNA molecules within the nucleus (Supplementary
Fig. 4b). In fact, we have optimized the HED method to work well for
snRNA-seq, which has improved its suitability for transcriptomics, but
the results are still unsatisfactory. In short, the nuclei prepared by the
CED method from fixed or paraffin-embedded samples are more sui-
table for the research of snRNA-seq.

Performance of nuclei from FFPE tissues in snRNA-seq
We identified 150,507 high-quality unique nucleus barcodes using the
barcode-gene rank plot, with clear separation of nuclei from back-
ground noise, and an average of more than 10,000 nuclei were iden-
tified in every sample (Fig. 3a). Gene and UMI count distribution
showed that the total UMIs and genes in FF(M20) and PFA(4 C) were
significantly (p <0.05) higher than in PFA(37C) (Supplementary
Fig. 5a, b), which confirmed that CED method could maximize the
retention of RNAmolecules. But the total number of genes detected in
all samples were comparable, all above 20,000 (Supplementary
Fig. 5c). In addition, snRNA-seq captured a mean of 1835, 2725, 1347,
2013, 1847 genes and 4189, 11100, 4996, 8759, 7072 UMIs in single
nucleus by sequencing average ~27 k, 19 k, 13 k, 17 k, 12 k reads per
nucleus for FF(10×), FF(M20), PFA(37 C), PFA(4C) and FFPE(4 C)
samples, respectively (Fig. 3b, c). The number of genes and UMIs in
FF(M20) was higher than FF(10×), which benefit from the principle of
capturing full-length and transcripts by random primers. Moreover,
the gene and UMI counts per nucleus in PFA(4C) were slightly lower
than FF(M20), but about 1.5 to 1.75 times higher than PFA(37C), and
even about 2–2.5 times in individual samples, and their numbers in
FFPE(4 C) were also higher than that in FF(10×) and PFA(37C)
(Fig. 3b, c). The saturation analysis showed that FF(M20) and PFA(4C)
had the highest sensitivity, followed by FFPE(4 C), with 4000 to 5000
detected genes per nucleus, respectively, at a sequencing depth of
30,000 trimmed reads per nucleus, and both exhibited a higher gene
detection rate than PFA(37C) (Fig. 3g). We next compared our data
with other reported results (Fig. 3d and Supplementary Fig. 5d). The

Fig. 3 | Validation of snCED-seq quality control data. a–c Number of nuclei (a),
UMIs per nucleus (b) and genes (c) per nucleus detected in fresh frozen, PFA-fixed
and FFPE samples. dGene detection per nucleus comparison of our data (> 10,000
nuclei) with mouse tissues (5795 (kidney), 4287 (liver), 6732 (heart) and 3774
(testis) nuelci) by snRandom-seq10, mouse brain (7031) by snFFPE-seq9 and breast
(5721) by snPATHO-seq8. Data in the box plot correspond to the first (lower hinges)
quartiles, third quartiles (upper hinges), and median (center). The upper whisker
extends from the hinge to themaxima no further than 1.5 * IQR from the hinge. The
lower whisker extends from the hinge to the minima at most 1.5 * IQR of the hinge.

e, f Percentage of mitochondrial (e) and ribosomal (f) genes. g Saturation analysis
of snCED-seq based on the different samples. h Percentage of reads mapped to
different genomic regions under different conditions. i Counts of different RNA
biotypes detected in FFPE brains. j The Pearson’s correlation coefficient (R) of the
normalized gene expressions between technical replication samples and post-
fixed/fresh samples (All p values =0). n = 3 biological duplication, and bars show
mean ± SD (a–c, e, f and i). a–c, ns p >0.05, *p <0.05, **p <0.01, ***p <0.001
(Tukey’smultiple comparisons test), and the specificp values are in the sourcedata.
Source data are provided as a Source Data file (a–j).
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genes detected per nucleus in snCED-seq datasets of brains compar-
able with other parenchymatous organs, despite inherently lower RNA
abundance in brains (Supplementary Fig. 5d). The number of genes
detected in snRNA-seq reached saturation between 100 k and 150k
uniquely aligned reads per nucleus (Supplementary Fig. 5d). Beyond
that, lower rates ofmitochondrial and ribosomal genes in PFA(4 C) and
FFPE samples than others, almost 0, indicating that the CED nuclei
were pure without cytosolic contamination (Fig. 3e, f). Unlike FF(10×),
samples captured by random primers exhibited homogeneous cov-
erage across the body of protein-coding, but with a slight bias toward
the 3′-end due to the extra addition of oligo(dT) primer in reverse
transcription (Supplementary Fig. 5e). However, PFA(37 C) hadmore 3′
bias, possibly related to the greater fragmentation ofRNAwithin nuclei
(Supplementary Fig. 5e).

In our snRNA sequencing experiment of PFA-fixed and FFPE
brains, less than 10%uniquely aligned readsweremapped to exons and
intergenic regions, andwithmore readsmapped to introns (Fig. 3h). In
contrast, frozen samples had a higher proportion of exons (FF(M20):
~13% and FF(10×): ~21%) (Fig. 3h). We suspected that the nuclei of fro-
zen sampleswere preparedby thehomogenizationmethod,whichwas
more susceptible to the cytoplasmof pollution. By comparison, higher
coverage of intronic regions in the post-fixed groups, especially in
PFA(4C) and FFPE(4 C) (Fig. 3h), suggesting that our nuclei had little
cytosolic contamination, with higher fidelity. The higher proportion of
introns might lead to more accurate RNA velocity measurements
across differentiation trajectories21. A broad spectrumof RNAbiotypes
wasdetected, andprotein-coding geneswere themosthighlydetected
biotype across all groups, but also other biotypes (Supplementary
Fig. 6a). Unexpectedly, a substantial amount of full transcripts was
detected in all group samples, especially in FF(10×) (Supplementary
Fig. 6a), used 10×ChromiumSingle Cell 3′ Solution, which is consistent
with our previous bulk RNA-seq analysis22. Contrary to our previous
knowledge, we speculated that perhaps there is a wider range of
A-capped non-coding RNA molecules within the nucleus. However, at
least our data show that extensive andought to exist non-coding genes
can be detected in the FFPE nuclei prepared by CED method (Fig. 3i).

Next, gene expression correlation analysis was performed on our
data.Toprove the repeatability of ourmethod, duplicate sampleswere
sequenced independently, and a high correlation (Pearson R: 0.99,
p < 2.2e-16) of gene expression profiles across random batches was
seen in PFA(37C), PFA(4C) and FFPE(4 C) groups (Fig. 3j), indicating
the robustness of nuclei from fixed/FFPE samples. We then analyzed
the correlation of gene expression between fixed/FFPE and frozen
samples. Consistently, the total RNA profiles of fixed/FFPE and
FF(M20) samples displayed a good correlation (PearsonR: > 0.9,
p < 2.2e-16), more genes were underexpressed in PFA(37C) group, but
not observed in PFA(4C) and FFPE(4 C) samples (Fig. 3j). A poor cor-
relation between fixed/FFPE and FF(10×) (PearsonR: ~0.7, p < 2.2e-16)
(Supplementary Fig. 5f), and higher gene expression in fixed samples,
which likely stem from differences in technique. In addition, the cor-
relation between FFPE(4 C) and PFA(4C) was as high as 0.99, reaching
the within-group level. Compared with PFA(37C), it was only 0.95, and
the gene expression was higher in FFPE(4 C) samples (Supplementary
Fig. 5f). These results suggest that nuclei from the CEDmethod behave
more similarly to frozen samples.

Cell heterogeneity analysis in PFA-fixed and FFPE tissues
We next compared the cell types identified in all group samples at
single-cell resolution. Unsupervised clustering of the above filtered
high-quality single brain nucleus profiles, by merging the data from
PFA-fixed, FFPE samples and frozen samples. Bymerging the data from
all batch of samples, we obtained a robust cell clustering by Uniform
ManifoldApproximation andProjection (UMAP), and the low similarity
cellular landscapes between FF and fixed/FFPE samples before batch
(Supplementary Fig. 7a). Batch-basedprocessing resulted in integrated

UAMP profiles revealed over 21 distinct clusters (Fig. 4a and Supple-
mentary Fig. 7b). All clusters could be further annotated based on
classical known cell-typemarkers (Fig. 4b), and 11major cell typeswere
identified with cell-specific genes reliably mapped on the corre-
sponding clusters (Fig. 4b and Supplementary Fig. 7c). Most of the
recommended terms in mouse hippocampus samples were identified,
including excitatory neuron (Ex1–8), inhibitory neuron (Inh1-4), Inter-
neuron (Inter_N), astrocytes (AST), Oligodendrocytes (Oligo), Oligo-
dendrocyte progenitor cells (OPC), Microglial (Micro) and Cajal
Retzius cells (CRC) (Fig. 4a). Besides the known cell types, we also
annotated choroid plexus cells (CPC) markered by Prlr, which are
rarely detected in reported data (Fig. 4a), and we suspect that our
nuclei were more abundant and contained more cell types. The chor-
oid plexus is a relatively small structure in the brain ventricles, due to
their low abundance, CPC will be masked by other cell types such as
neurons, glial cells in snRNA-seq. Understanding the role of CPC can
provide valuable insights into both normal brain physiology and
pathological conditions. The identification of CPC is a breakthrough in
understanding rare cell types in the brain, not only contributes to a
better understanding of the molecular landscape of brain tissue but
also paves the way for future investigations into the role of CPC in
brain function and disease.

Subsequently, we analyzed the proportion of cell types across all
groups. As expected, the proportion of cells differed between 3’ and
random primer capture techniques, mainly in AST, Oligo, and Endo
cells (Fig. 4c and Supplementary Fig. 7d). However, a similar popula-
tion of cells between frozen andpost-fixed samples in our datasets was
seen (Fig. 4c). We surmise that we shortened the time of enzymatic
dissociation of the samples at high temperatures, thereby retaining
most of the cell types in PFA(37 C) group. However, the experi-
mentalists are required to be experienced, otherwise resulting in poor
batch. Despite this, CPC cells were severely lost in PFA(37 C) samples,
but a considerable number of cells were detected in both PFA(4 C) and
FFPE samples (Supplementary Fig. 7d), indicating that CED detected
more scarce cells than conventional methods. In addition, higher
number of cell clusters was obtained at a resolution of 0.1 than other
reported results23–25. Therefore, we counted the cluster numbers under
different resolutions and found that absolute advantage in PFA(4 C)
samples, and even a higher cluster number of FFPE samples than
PFA(37C) group (Supplementary Fig. 7e). But the number of clusters
reached a comparable level in all samples when resolution at 1.0
(Supplementary Fig. 7e). We confirm our previous inference that the
nucleus prepared by CED method may bring more cellular hetero-
geneity information andhas the potential to recognizemore cell types.

Systematic comparison of the CED with mechanical homo-
genization methods
To verify whether the CED technique maintains its established nuclear
yield and genetic detection advantages, we conducted a direct com-
parison with nuclei prepared by mechanical homogenization dis-
sociation (MHD) methods of two previously reported and a
commercial kit by using snRandom-seq, and named FFPE(CED),
FFPE(MHD1)10, FFPE(MHD2)26, and FFPE(MHD3), respectively. Among
them, MHD3 could only obtain tens of thousands of nuclei in the
hippocampus, which could not be used for subsequent snRNA-seq,
while MHD1 and MDH2 with unclean background compared with CED
nuclei, and there were still larger or smaller fragmented tissues (Sup-
plementary Fig. 8). The cDNA and library structures of FFPE(MHD)
were more complex and the main peak fragment distribution was
smaller than that of FFPE(CED), which might be related to the nuclear
purity (Supplementary Figs. 3 and 8a, b). In contrast, fewer nuclei and
significantly (p <0.05) reduced mapping rates were observed in
FFPE(MHD) (Supplementary Fig. 9a, c). Despite the higher sequencing
depth with significantly increased (p < 0.05) sequencing saturation in
FFPE(MHD) (Supplementary Fig. 9b, c), the number of UMIs and genes
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per nuclei were significantly (p < 0.05) lower than that in FFPE(CED),
only about one-third (Supplementary Fig. 9d, e). In addition, the pro-
portion of ribosomal genes and mitochondrial genes increased sig-
nificantly (p < 0.05) in FFPE (MHD),which shown again hat thepurity of
nuclei was insufficient (Supplementary Fig. 9f, g). Saturation analysis
showed that the number of genes detected in FFPE(CED) was sig-
nificantly better than that in FFPE(MHD) samples at any sequencing
depth, and FFPE(MHD) were reached saturation point by 5–10 K
uniquely aligned reads per nucleus, but FFPE(CED) hadnot yet reached
saturation point at 20 k (Supplementary Fig. 9j). Although theoreti-
cally, mechanical homogenization tissues at low temperature had little
effect on the integrity and yield of RNA (such as FF(M20)), the current
application of this strategy in FFPE samples requires the help of high-
temperature enzyme dissociation for about 1 h, which will lead to RNA
molecule leakage, andmight be the important reason for the reduction
of gene number. Compared with the enzymatic dissociation method,
the genes within nuclei from MHD were distributed with higher pro-
portion of exons and lower introns, both in frozen and formalin-fixed
tissues (Supplementary Fig. 9h). We speculate that it might be related
to purity, due tomore immature RNAwithin nuclei than in the cytosol,
and theoretically more introns. Moreover, the exons proportion in the
nuclei of FFPE samples based on MHD dissociation was higher than
that of frozen tissues (Supplementary Fig. 9h), which also confirmed
that the post-fixed samples were difficult to homogenize thoroughly,
resulting in more debris. Considerable amount of total RNA in all
samples by using snRNA-seq technology based on random primer
(Supplementary Fig. 9i). Next, we performed a correlation analysis of
gene expression between FFPE and frozen nuclei. Naturally formed
two modules with FFPE(CED)_FF(MM20) and FFPE(MHD1)
_FFPE(MHD2) as matrices. Lower repetition within group of
FFPE(MHD1), andweaker correlatedwith FFPE(CED) and FF(M20) gene
expression than FFPE(MHD2) (Supplementary Fig. 10e). In addition, a

higher degree of processing-related artefacts was observed in the
nuclei from other samples compared to FFPE(CED), including the
stress response pathway, which could introduce bias in the inter-
pretation of these pathways (Supplementary Fig. 10f).

Although the nuclei numbers were similar before quality control
(Supplementary Fig. 9a), the cell sacrifice rates reached a staggering
37.2% and 72.7% in FFPE(MHD1) and FFPE(MHD2) after screening with
the same criteria in all samples, respectively (Supplementary
Fig. 10a, b). FFPE(CED) with only 9.9% cell screening rate proved that
the quality of nuclei prepared by CED method was higher and more
compatible with snRNA-seq technology. Consistently, we found that
an average of 34.5% and 63.9% of reads were distributed in rRNA in the
two FFPE(MHD) samples, compared to almost zero in our data (Sup-
plementary Fig. 10c). Many reads were distributed in rRNA, which
might be the reason for the lower UMI and gene numbers, and also the
factor that more cells were filtered. Subsequently, cluster analysis was
performed after removing batch effect to construct a merged UMAP
mapwith 22 cell clusters (Supplementary Fig. 10d).Whileboth samples
identified a consistent number of cell types, their proportions differed
significantly (Supplementary Fig. 11a–c). Both in frozen and FFPE
samples, the nuclei obtained by MHD technologies contained more
neuronal cells, especially in FFPE(MHD2), which captured 95.9% of
neuronal cells (Supplementary Fig. 11c, d). Whereas the nuclei pre-
pared by CED identified more non-neurons, such as Ast, CPC, CRC,
Micro, and OPC, which might be related to the nuclei preparation
strategies, and the homogenized nuclear suspension requiresmultiple
decontamination processes, resulting in the loss of scarce cells or cells
of small size, leading to cell proportion artifacts. In addition, the
cluster numbers under different resolutions were counted, and
FFPE(MHD2) showed the worst cell heterogeneity, while FFPE(CED)
was comparable to FF(M20), and even at low resolution, it was more
advantageous for cell heterogeneity analysis (Supplementary Fig. 11e).
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Consistently, more genes under-expressed in FFPE samples
compared to FF (M20) (Fig. 4d and Supplementary Fig. 11f). However,
gene expression perturbations varied widely between nuclei prepared
by different strategies. Compared with FF(M20), 547 downregulated
DEGs in FFPE(CED) (Fig. 4d), while 4960 and 4447 genes were sig-
nificantly (p <0.05) under-expressed in FFPE(MHD1) and FFPE(MHD2),
respectively. Moreover, 82% and 96% of DEGs were upregulated in
FFPE(CED) compared to FFPE(MHD) (Supplementary Fig. 11f). The
differences in gene expression between nuclei prepared by the two
MHD methods were also remarkable, with 4314 genes downregulated
in FFPE(MHD1) (Supplementary Fig. 11f). In summary, the effect of
nuclear preparation strategy on gene expression should not be
ignored, which is crucial for accurate disease mechanism study. In
addition to the high yield and no RNA damage within nuclei, CED
method has higher gene expression similarity and richer gene
expression between dissociated nuclei and frozen samples, which is
more suitable for the application of clinical samples.

snCED-seq revealed cell diversity and heterogeneity in FFPE
hippocampal from AD mice
To validate the promise of our nuclei for the researchof braindiseases,
we applied snCED-seq on the FFPE hippocampus of AD and matched
wild type (WT) mice (Fig. 5a) to explore the specific-cell state changes
of AD samples. After nuclei with over or under expression of genes
were filtered out, snCED-seq identified 62,000 true nuclei in the FFPE
brains, and with approximately zero mitochondrial and ribosomal
genes in all samples (Supplementary Fig. 12a). Unsupervised clustering
of the single nuclei revealed 19 distinct clusters at a resolution of 0.1
(Supplementary Fig. 12b). The main cell types of AD and WT hippo-
campus could be identified based on the known cell-type markers,
including Ex1-6 (Hs6st3, Pdzrn3), Inh1-4 (Gad1, Gad2), AST (Slc1a2),
Oligo (Mbp, Mobp), Micro (Dock2), OPC (Vcan), Endo (Flt1, Mecom),
Smooth muscle cell (SMC, Ebf1). Olfactory ensheathing glia (OEG,
Bnc2) and CRC (Cdh4, Reln) with minimal number of cells were also
identified (Supplementary Fig. 12c).Abundant cell types could be
identified in our data, but differences in cell proportions compared
with previous data from frozen hippocampal of 7-month-old mice [2],
such as an increased proportion of most neuronal cells in the AD
model, but AD-related cells (Ast, Micro, Oligo, OPC) and vascular-
related cells (Endo, SMC) were absent (Supplementary Fig. 12f). The
AST proportion gradually increased with the increase of age of AD25,
and a decrease in the proportion of AST of AD mice has also been
reported23. We speculate that it might be due to inconsistent methods
of nuclear preparation or age of AD mice.

To identify cell typesmore accurately andprecisely, a referenceof
the published snRNA-seq data of frozen AD hippocampal25 was used
for supervised clustering using Approximate Nearest Neighbors Oh
Yeah (Annoy) (Fig. 5b and Supplementary Fig. 13). 90.7% of the FFPE
data and the reference data were predicted to be high predicted
scores, and only a minority of the cells had a score less than 0.8
(Supplementary Fig. 12d, e). However, we could also infer cell types
from the distribution of low-predicted cells in the UMAPmap, such as
Ast and ExN cells (Supplementary Fig. 22a). The gene and UMI num-
bers in all cell types from the high predicted scorewere higher, and the
other quality control data was also better (Supplementary Fig. 22b). In
addition, the ExN.IEGs cells from the reference data were successfully
detected in our data, but in a small proportion, and overlapped with
ExN.CA1.1 cells, so we included them in the ExN.CA1.1 (Supplementary
Fig. 22c). Finally, we determined the atlas of supervised clustering, and
identified 22 clusters covering 11 cell types, including 9 Ex cells (ExN,
ExN.CA1.1–1.3, ExN.CA3.1–3.3, ExN.DG, and ExN.sub), 4 Inh cells
(GABAergic.1-4, GABA1-4), and 9 non-neuronal cells (Fig. 5b, c). We
observed a disproportion of cells in the AD1 that did not conform to
conventional wisdom (Fig. 5d), but the proportion of diseased cells
before and after removal of the AD1 samplewas barely affected (Fig. 5e

and Supplementary Fig. 12g). Overall, the cell types in the reference
data were all detectable in our FFPE nuclei, with excitatory cells
accounted for the largest proportion (52%), followed by Ast (21%),
Oligo (11%), GABA (6%), OPC (4%), and Micro (3%), and the other cells
accounted for about 1% respectively (Supplementary Fig. 22d).

The proportions of cells obtained by both clustering methods
were similar (Supplementary Fig. 7f, g). We observed that most cells
coincided with unsupervised clustering by marker gene comparison,
with ExN.DG corresponding to Ex.neuron6 and GABA4 corresponding
to Inh.neuron2 (Fig. 5c and Supplementary Fig. 12c). However, the
annotation of some cells changed. For example, we merged Ast1-2 in
the reference data into AST, and labeled SMCs and OEGs in unsu-
pervised clustering as pericytes_Per and Fibroblasts_Fib, respectively
(Fig. 5c and Supplementary Fig. 14c). OECs are a glial cell between
Schwann cells and oligo, which have the functions of neurotrophic,
inhibition of gliosis, scar formation and sheath formation, and can
provide a suitable microenvironment for axon growth and strong
migration characteristics. It has been reported that OEC transplanta-
tion reduced amyloid burden in amyloid precursor protein transgenic
mouse model27. OECs injected into the hippocampus of AD mice can
improve the learning and memory ability and increase the activity of
mitochondrial cytochrome oxidase in the hippocampal CA1 region,
which has an obvious therapeutic effect on AD. This is consistent with
our results that OECs in AD undergo loss (Supplementary Fig. 12f).
Notably, CR cells are only present in our data other than referencedata
(Supplementary Fig. 12d). The number of CR cells decreases with brain
development, and a handful of CR cells can still be detected in the
hippocampus of old mice28. Since the dominant advantage of the CED
strategy to maximize the retention of nuclei of FFPE tissues, relatively
few CR cells distributed in the hippocampus were efficiently enriched,
and detected by snRNA-seq. We then observed that the proportion of
all glial and vascular-associated and other nonneuronal cells were
reduced in AD, compared withWT (Fig. 5e). Although the proliferation
of Ast and Micro cells is deemed to be the cellular changes of AD
disease, but the frozen hippocampal snRNA-seq data reported by
Regev, except for Micro and Endo cells, the remaining proportion
changes of non-neural cells are consistent with ours25. Also, in the
cortical data, Astwas in a status ofmissing,Microwas the only cell type
that increased in AD, and the rest were in a stable state. But in the
hippocampus, Ast, OPC and vascular cells were reduced in AD, the
proportion of Micro increased, and Oligo remained almost
unchanged23. The similar results further demonstrate the reliability of
our data.

In brief,more abundant cell types canbedetected in our data, and
provide the superior nuclei for omics research in brain diseases. We
next used these cells to characterize the heterogeneity of AD-disease
cells and the perturbing nature of perturbation of gene expression.

Multidimensional identification of AD disease-specific cells
To reveal AD-associated cells, we compared levels of gene expression
in nuclei isolated from AD versus WT individuals by cell type, and
identified 4225 unique differentially expressed genes (DEGs) that
implicated all major cell types, and 95.6% of DEGs were overexpressed
genes (Fig. 5f). Except for Ex, the remaining cells showed a strong
signature (log2FC >0.25, p <0.01) of activation, especially in GABA,
Micro andOligo cells (Fig. 5f), where the activation of GABA.2 sub-cells
was dominant (Supplementary Fig. 15a). More DEGs were upregulated
in Ex neurons than underexpressed genes, possibly originating from
the neural activation of Ex.CA3.1 and Ex.CA3.2 sub-cells. We then
analyzed the DEGs with multiple methods, and the results were con-
sistent, especially in neurons and glial cells (Supplementary Fig. 15b).
Moreover, both up- and downregulated DEGs were highly cell type
specific, 62% of DEGs in neurons, whereas DEGs in non-neuronal
populations were substantially smaller, probably owing to reduced
power in lower-abundance cell types29. Furthermore, vascular cells
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(Endo and Epend) also showed no less differential changes than glial
cells (Fig. 5f, Supplementary Fig. 15a, andSupplementaryData 1). These
contrasting observations on the number and dominant directionality
of DEGs reveal a heterogeneous response to AD across cell types-a
recurrent theme that will be observed throughout the study.

The vast majority of DEGs (50%) were perturbed only in a single
cell type, which indicates that these perturbations are strongly cell-
type specific (Supplementary Fig. 15c). But a small number of genes

washighly expressed in 82%of cell types, such asMagi2,Cadm2,Grm7,
Adgrl3, Ctnna2, Ctnnd2, Camta1,Dgki,Drc1, Lsamp,Mbd5,Nrg3, Ppfia2,
and Prkce (Supplementary Data 2). Rn18s-rs5 and Malat1 genes were
under-expressed in most cells. Among them,Magi2 has been reported
to be associated with AD phenotypes30 and is considered a potential
candidate locus in the etiology of divergent AD, which was involved in
the regulation of protein degradation, apoptosis, neuron loss, and
neurodevelopment31. We speculate that these genes preferentially
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Fig. 5 | snCED-seq distinguishes major cell types and shows disease-cells in the
5XFAD brains. a Overview of the experimental strategy. Created in BioRender. Tu,
D. (2025) https://BioRender.com/hrx13a. b Cell map of mouse hippocampus in WT
and AD by supervised clustering with ref. 25. UMAP of 62,000 single-nucleus RNA
profiles from hippocampi of Then, Nuclei were collected and resuspended 5-
month-old male mice, three WT and three 5 × FAD (AD); colored by cluster. c Heat
map showing expression of specific markers in all cell types, identifying each
cluster in B. Expression level (color scale) of marker genes across clusters and the
percentage of cells expressing them (dot size). d The frequency of each cluster in
every sample. e The percentage of cell types in AD and WT. AD1 sample was

screened. Data in the box plot correspond to the first (lower hinges) quartiles, third
quartiles (upper hinges), andmedian (center). The upper whisker extends from the
hinge to the maxima no further than 1.5 * IQR from the hinge. The lower whisker
extends from the hinge to the minima at most 1.5 * IQR of the hinge. f DEG counts
for each cell type The intensity of the blue colour was proportional to entry values.
g The odds ratios of DEGs and AD-disease genes in every cluster. The dot size
expresses cells association with the AD disease. Empty dot indicated statistical
significance and crossed dot indicated non-significance (fisher’s exact test). and the
specific p values are in the source data. n = 3 biological duplication, and bars show
mean ± SD (e). Source data are provided as a Source Data file (b–g).
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undergoperturb changes in expression inADpathology, whichmaybe
therapeutic targets associatedwithADdisease.Overall, these results of
our snRNA-seq for FFPE brains indicate that all major cell types are
affected at the transcriptional level by AD pathology. Finally, we eval-
uatedwhether AD-associated variants are enriched in genomic regions
with genes whose expression pattern is cell-type-specific. Fisher’s test
enrichment scores of each cell type-specific DEGs and AD risk genes
were calculated, and AD risk variants were found to be associated with
genes from Micro, OPC, Ast, and Oligo cells, and they were also sig-
nificantly (p <0.05) enriched in GABA1 and GABA2 (Fig. 5g).

The multi-dimensional analyses results showed that nuclei pre-
pared by CED method could identify disease-specific cell types com-
parable to those in frozen samples by snRNA-seq, and vascular cells,
which have been less studied in AD, also surfaced. Next, the traditional
AD-associated cells (Micor, Ast, Oligo) were used for further analysis
firstly.

Microglial heterogeneity analysis associated with AD-
related traits
Using the single-cell resolution feature, we sub-clusteredMicro cells of
AD and WT mice, and identified four subpopulations (Micro0-3)
(Supplementary Fig. 16a). The micro2 was representative cells only in
5xFAD mouse, but micro0 and micro1 were mainly distributed in WT
(Supplementary Fig. 16b). A scanty of 15 micro3 cells were distributed
independently in theUMAP atlas, andwith the 1 to 2 ratio inADandWT
(Supplementary Fig. 16b), indicating that Micro cells are significantly
affected by ADpathology and the disease-induced differences result in
two nonoverlapping cellular states. We observed that the top 10
upregulated DEGs in AD were highly expressed only in Micro2 and
Micro3, implying specific disease changes for these cells (Supple-
mentary Fig. 16c). Micro’s DEGs overlapped with the AD disease gene
set, and 11 geneswere identified (Supplementary Fig. 16d). These genes
were mainly expressed in Micro2 and Micro3, and individual genes
were upregulated in Micro1 (Supplementary Fig. 16e). Thus, we
determined Micro2 is a diseases-associated microglial (DAM).
Although Micro3 cells accounted for less than 1% of the total, disease
geneswere specificallyhighly expressed in them, suchas theβ-amyloid
precursor protein related gene (App) (Supplementary Fig. 16e). We
found that the expression of these genes was higher in Micro3 of AD
mice (Supplementary Fig. 16f), implying that five Micro3 cells in AD
were also DAM cells, indicating that our nuclei are highly cellular
heterogeneous and more suitable for the application of tran-
scriptomics in diseases.

To demonstrate the accuracy of the DAM cells we identified, we
employed multi-channel data for validation. The expression of DAM
genes in human cerebral cortex was verified in our data (Supplemen-
tary Fig. 16g). The proton divalent cation transporter Slc11a1, which
regulates ion homeostasis and has pleiotropic effects on proin-
flammatory responses, was expressed only in Micro3. The zinc efflux
transporter gene Tmem163 and immune cell adaptor gene Skap1 were
expressed only in Micro2, which were specific for AD brain (Supple-
mentary Fig. 16g). SKAP1 is an immune-cell adaptor that couples T-cell
receptors to the “inside-out” signaling pathway of LFA-1-mediated
T-cell adhesion. Studies have reported that Skap1-deficient mice are
highly resistant to collagen-induced arthritis, which is a potential tar-
get for therapeutic intervention of autoimmune and inflammatory
diseases32. Thus, the high expression of Skap1 in Micro2, lose its anti-
inflammatory resistance, which is promising to be a checkpoint for
studying the mechanism of AD disease. Then, DAM genes in cortical
Micro of 7-month-old 5XFAD mice were also used to verify the accu-
racy of our DAM identification23. The results showed that Axl, Lgf1, and
Csf1, whichwere upregulated inAD cortex, were all highly expressed in
AD hippocampus comparedwithWT, but the homeostatic genes, such
as P2ry12, Crybb1, Tmem119, and Cx3cr1, were under expressed in AD
(Supplementary Fig. 16h, Left). However, Trem2 was under-expression

in AD of our data, whereas Csf1, a gene reported Trem2-dependent
upregulation, does not appear to be affected by Trem2 deficiency in
the AD hippocampus. Similar results were obtained, the reported DAM
genes weremainly highly expressed inMicro2 andMicro3, while most
of the downregulated genes were more prominently expressed in
Micro1 (Supplementary Fig. 16h, Right). The expression profiles of
reported disease-pathway genes associated with AD in microglia sub-
clusters were also analyzed. The antioxidant defense system is essen-
tial for cell survival in the central nervous system, and oxidative stress
dysfunction is associated with neurodegenerative diseases33. There-
fore, we first analyzed the genes involved in the regulatory pathway of
oxidative stress-induced neuronal death. We found that these genes
were highly expressed in ADmice such as the amyloid gene (App), the
ubiquitin protein ligase gene (Prkn), and the oxidation resistance 1
gene (Oxr1) (Supplementary Figs. 16i and 17). Analogous results were
presented again, that all the genes related to this pathway were sig-
nificantly (p < 0.05) highly expressed in Micro2 and Micro3 (Supple-
mentary Fig. 16j). In addition, genes involved in the B-cell receptor
signaling pathway, regulation of neuronal apoptotic processes, stress-
activated protein kinase signaling cascade, regulation of GTPase
activity, and immune response-activation signaling pathways were all
significantly overexpressed in the AD hippocampus (Supplementary
Fig. 16k).

Our snRNA-seq data from FFPE hippocampal nuclei prepared by
CED method identified two DAM cells, which Micro2 was the pro-
liferating DAM in AD, and DAM-signature gene expression was inde-
pendent of Trem2 expression. Moreover, Micro3 is also affected by AD
development and exists in AD independent of Micro2. In addition, the
combined analysis of multiple datasets indicated a strong robustness
of our nuclei, which will be further validated in subsequent analyses.

Similar disease-related transcriptional changes occur in astro-
cytes and oligodendrocytes
Next, we identified five unique AST transcriptomically defined clusters
characterized by high expression of Luzp2 (Ast0), Rgs6 (Ast1), Kcnip4
(Ast2), Cdh4 (Ast3), and Rnf213 (Ast4) (Supplementary Fig. 18a, b). The
DEGs of AST subclusters between AD and WT were evaluated, and
most DEGs were upregulated in AD (Supplementary Fig. 18c). We
identified DEGs that were unique to single or combinations of AST
subclusters (Supplementary Fig. 19a) and evaluated these gene sets by
Gene Ontology (GO) analysis (Supplementary Fig. 19b). We observed
that the specific DEG numbers (Supplementary Fig. 19a) and their
enriched GO terms (Supplementary Fig. 19b) were largest in AST2, and
the greatest change (log2FC) in specific expression (Supplementary
Fig. 18c). In addition, when comparing the top-10 up/downregulated
DEGs by cluster and disease state, few conserved/common tran-
scriptomic changes were found across all AST subpopulations but
instead found highly cluster-specific transcriptomic changes based on
disease state (Supplementary Fig. 18d). The perturbation of gene
expression changes in Ast2 and Ast4 was the most prominent (Sup-
plementary Fig. 18d), and was provisionally defined as DAA (Disease-
associated astrocytes). The DEGs that were significantly upregulated
were exactly the marker genes of Ast2 (Supplementary
Figs. 18b–d and 11c). Despite the overall absenceof Ast cells in AD, Ast2
was highly enriched in 5xFAD mice, and Ast4 also exhibited slight
cellular proliferation (Supplementary Fig. 18e), consistent with the
pathological features of astrogliosis in AD. DAA genes, Kcnip4, Erc2,
Nrg3, Nrxn3, and Csmd1 were notably highly expressed in Ast2 of AD
mice compared with other subclusters (Supplementary Fig. 18g). We
suspected that these DAA genes were primed activated in the hippo-
campus, and were preferentially activated during disease induction to
dominate cell state changes.

DAA cells of Gfap-high state in the report25, its upregulated genes
were highly and unique expression in Ast4, such as Gfap, Aqp4, C4b,
and the gene encoding a serine protease inhibitor linked to increased
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amyloid accumulation (Serpina3n) and encoding a lysosomal cysteine
protease involved in proteolytic processing of amyloid precursor
protein,Ctsb (Cathepsin B) (Supplementary Fig. 18f).Moreover, a set of
genes including those involved in endocytosis (Vim), complement
cascade (Osmr) and senescence (Ggta1) were also overexpression in
AST4, confirming our AST4 as a DAA (Supplementary Fig. 18f). Gsk3b
(glycogen synthase kinase 3β gene), Psen1 (presenile factor gene), Bdnf
(brain-derived neurotrophic factor), and AD risk gene Sorl1 (encoding
endosomal recycling receptor gene) and App, associated with AD
pathological pathways,were alsohighly expressed in our twoDAAcells
(Supplementary Fig. 18h, i). Then, we examined the expression levels
of RNA signatures from bulk datasets, only ischemic related genes
(Mcao) and inflammation related genes (Lps) were overexpressed in
Ast2, but downregulated in Ast4 (Supplementary Figs. 19d and 20 top).

Following the approach of AST, we also characterized the Oligo
subpopulations (Supplementary Fig. 22a). Six Oligo subclusters were
identified, and Oligo2 characterized by Kcnip4, Nrg3, Csmd1, and
Grin2a, which was consistent with Ast2 (Supplementary Fig. 22b).
Moreover, the top upregulated genes in AD were similarly distributed
in the Oligo2 (Supplementary Fig. 22d), and its unique DEG and GO
term numbers were higher than those in other subclusters (Supple-
mentary Figs. 22c and 23a), while thedownregulatedDEGsweremainly
derived from Oligo5 (Supplementary Fig. 22c). Unlike Miro and AST,
comparable cell proportions of Oligo subclusters between AD andWT
(Supplementary Fig. 22e), which was consistent with conventional
cognition. We also observed that AD-related genes were over-
expressed in Oligo2 (Supplementary Fig. 22g, h). Strikingly, marker
genes of Oligo5, such as Gpc5, Ntm, Rora, and Nrxn1, were also highly
expressed in Ast4, which was specifically expressed by pathologically
(Supplementary Fig. 22i). Among them, Gpc5 (Glypican 5) was the
susceptibility gene for inflammatory demyelinating diseases34. Ntm
was involved in the negative regulation of neuronal projection devel-
opment and acts upstream or within cell adhesion. Downregulation of
Rora inhibits glioma proliferation through NF-κB signaling pathway35,
and its regulatory effect was lost when Ast4 and Oligo5 are upregu-
lated.Nrxn1 (Neurophin 1)was a cell adhesionmolecule thatplays a key
role in establishing and maintaining synaptic connections, and its
abnormal expression has been implicated in schizophrenia36. Next, we
analyzed the expression of marker genes from AD-pathology-
associated Oligo29 in Oligo0-5, and most of genes were more sig-
nificantly expressed in the Oligo2 andOligo5 (Supplementary Fig. 22j).
In particular, Qdpr, Nlgn1, Lama2, and Fchsd2, closely related to AD-
pathology genes reported, were highly expressed in Oligo5 (Supple-
mentary Figs. 22j and 20 bottom).

Finally, to further confirm the accuracy of DAA and Disease-
associated Oligodendrocytes (DAO) identification, we collected func-
tional terms associated with AD pathology of previously reported, and
analyzed the enrichment of these disease functions in Ast and Oligo
subpopulations (Supplementary Fig. 21 and Supplementary Data 3).
The results showed that almost all functions were enriched in the Ast2,
including lipids, glial cell regeneration, endocytosis, NFκB, endothelial
cell differentiation and cognition (Supplementary Fig. 21a). Ast4 cells,
however, were enriched with relatively independent functional sets,
including functions in the regulation and regulation of growth,
response to oxygen levels, and autophagy (Supplementary Fig. 21a).
Moreover,GO termsenriched in Ast2were alsoenriched inOligo2with
stronger significance and enrichment index (Supplementary Fig. 21b).
And the DEGs of Oligo2 were also enriched in autophagy, apoptosis,
mRNA regulation and myelination (Supplementary Fig. 21b). In addi-
tion, AD-related genes fromDisGeNet database and the reported DAA,
DAM, and DAO genes were mainly enriched in Ast, Micro and Oligo,
followed by Ex.CA3.1 and GAB.2 cells, which was consistent with the
results of DEGs analysis (Supplementary Fig. 21c).

In a nutshell, the characteristics of DAA and DAO were similar in
our snRNA-seq data of FFPE samples. Oligo2 and Ast2 had the same

specific expression genes and transcription differences, whileAst4 and
Oligo5 have similar transcription characteristics.We conjectured that a
group of disease-susceptible gene sets caused similar transcriptional
changes in different cell types, which, in turn, affected the occurrence
and progression of AD.

Integration of astrocytes and oligodendrocytes from multiple
datasets
Given the abundanceof high-quality, well-poweredAD sampleAST and
Oligo snRNA-seq datasets in the literature, we next sought to deter-
mine whether we could resolve the same transcriptomic differences
previously reported, and in turn demonstrate the availability of our
nucleus. We evaluated AST and Oligo subtypes in each individual
dataset and compared themwith ours. We compared five AST clusters
(G0–G4) in the Grubman dataset37, four AST clusters (M0–M3) in the
Mathys dataset29, and 7AST clusters (Z0–Z9) in the Zhoudataset23, and
9 AST clusters (L0–L8) in the Liddelow dataset38 were integrated with
our AST0-4 for analysis, separately (Supplementary Fig. 19e). A similar
analysis was performed on Oligo subtypes (Supplementary Fig. 23d).
Using our AST and Oligo subpopulation profiles as a reference, we
identified sub-cells that were also recognizable in the individual data-
sets. Although a complete one-to-one correspondence was not possi-
ble, we still observed that AST andOligo subtypes were analyzed in the
individual data, and disease-associated cells (Ast2, Ast4, Oligo2, and
Oligo5) were clearly identified in all datasets, especially in Mathys and
Liddelow andMulti-datasets. For example, AST2 was highly correlated
with G0, G3, M3, M4, L3-6 cells, while AST4 was more correlated with
G1, G4, M0, L7, L8 (Supplementary Fig. 19e). In contrast, AST0, Oligo0,
and Oligo1 showed poor agreement in these datasets. In conclusion,
the results of multi-channel data integration analysis of our AST and
Oligo subclusters confirmed the aforementioned argument that the
diversity of distribution detected in multiple frozen samples could be
detected in our data, again demonstrating that our nucleus has cellular
diversity, which lays the foundation for the study of disease
heterogeneity.

Transcriptional similarities in different disease-specific
cell types
Although there are minimal transcriptional changes in neurons and
other cells in AD cortex23, and a recent work also focused only on
astrocytes and oligodendrocytes39. But the reported data of AD shows
that all major cell types are affected by AD pathology at the tran-
scriptional level29, whichwas consistent with our results. In our snRNA-
seq data of FFPE tissues, the Micro, GABA1, OPCs, AST, Ex.Neu, Oligo,
Ex.CA3.1, GABA.2 cells were more perturbed by AD (Supplementary
Fig. 24a). Moreover, more than 400 upregulated DEGs were identified
in two vascular related cells, Epend and Endo, which even exceeded
AST (Supplementary Fig. 24a). To test the previous conjecture that
there is a disease susceptibility gene-setwith consistent transcriptional
differences in different cell types. We performed differential analysis
of gene expression for all cell types perturbed by AD to explore the
transcriptional similarities of disease-related cell types. (Supplemen-
tary Fig. 24a).

We observed that only the DEGs of Micro were cell-specific, while
themost significant DEGs of the remaining glial cells and vascular cells
were highly heterogeneous, and the top DEGs of neuronal cells also
overlapped strongly (Supplementary Fig. 24b and Supplementary
Data 4). Since the Log2FC of two vascular cells were too large to
annihilating the information of the other cells, we present them
independently (Supplementary Fig. 24c). The positional candidate or
therapeutic marker genes, including the immune-related hub genes
(Fgf1340 and Etl441), the anti-inflammatory gene (Myo1e)42, the multi-
channel transmembrane tonic transporter gene (Ank), and the
cadherin-related protein gene (Ctnna3)43 showed the greatest tran-
scriptional changes only in micro cells (Supplementary Fig. 24b).
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However, Kcnip4, Grin2a, and Lrp1b were among the most differen-
tially transcribed in other nonneuronal cells. The gene encoding Kv
channel interacting protein 4 (Kcnip4) was a candidate gene for
attention deficit hyperactivity disorder44. The inability of the Kcnip4
isoform to interact with the secretase complex leads to increased
secretion of beta-amyloid enriched in the more toxic Aβ-42 species45.
And it also has been reported thatKcnip4 interacts with presenilin, and
the presenilin gene is associated with early-onset familial AD46. Sleep
deprivation (SD) could increases the risk of AD, and N-methyl-D-
aspartate receptors (NMDAR) is an important cognitive regulator.
Specific knockdown of hippocampal astrocytic Grin2a (the gene
encoding the NMDAR subunit GluN2A) aggravated SD-induced cog-
nitive decline, elevated Aβ, and attenuated the SD-induced increase in
autophagy flux47. Most of these conclusions were based on the results
of immunofluorescence staining, while our snRNA-seq data showed
exactly the opposite, the Grin2a gene was not only highly expressed in
Ast, but also positively expressed in most of the cell types associated
with AD (Supplementary Fig. 24b). The low-density lipoprotein
receptor-associated protein 1B (LRP1B) can interact with APP and
regulate its processing to Aβ48. In summary, the transcriptional pro-
filing of all cell types closely associated with AD reconfirmed our
previous hypothesis that a single disease-susceptible gene set causes
similar transcriptional changes in different cell types.

Performance of snCED-seq in human lung FFPE micro-samples
For archived clinical human FFPE samples, we successfully isolated
approximately 150,000 intact andpurenuclei fromone 50μmscroll of
paracancerous tissue using the CED method (Supplementary
Figs. 3b and 25a). These nuclei were then subjected to snCED-seq, and
the fragment size of library peaked about 317 bps (Supplementary
Fig. 25b). Unlike FFPE(MHD) data, only 0.8% of the sequencing reads
were distributed in rRNA, while the majority of reads were distributed
in introns in FFPE(Lung) (Supplementary Fig. 25c), whichmight be due
to the higher proportion of unspliced RNA present within nucleus, or
the preservation conditions and processing methods of FFPE samples,
which may affect RNA splicing efficiency. In the FFPE(Lung) dataset
with a sequencing depth of 9886k per nuclei, 1830UMIs and 770 genes
were detected per nucleus, respectively (Supplementary Fig. 25d).
Compared with scRNA-seq of frozen lung tissues, our sequencing
depth was only one-tenth of that, but the number of detected genes
was only reduced by half, and the proportion of mitochondrial and
ribosomal genes significantly lower than the reported49 (Supplemen-
tary Fig. 25d). Unsupervised clustering of the above filtered high-
quality 4271 single lung nucleus profile revealed ten distinct clusters
(Fig. 6a), and further annotated based on classical known cell-type
markers49,50 (Fig. 6b). Immune cells (B/T cells, mast andmacrophages),
alveolar epithelial type cells (alveolar epithelial type cells_AT1/2 and
lung epithelial cells_ epithelial), vascular cells (endothelial) and inter-
stitial cells (fibroblasts) were successfully detected, covering almost all
major cell types of the lung (Fig. 6a). Gene expressions of classical
known cell-type marker genes, such as chloride intracellular channel 5
(CLIC5) and caveolin-1 (CAV1) were highly expressed in AT1, surfactant
protein B (SFTPB), ATP-binding cassette subfamily A member 3
(ABCA3), and surfactant protein C (SFTPC) were highly expressed in
AT2, were reliably mapped on the corresponding clusters ((Fig. 6b, c).
Besides the known top markers of cell types, such as such as SNX30,
TMEM164, and CACNA2D2, which are typical of non-lung cells, were
highly expressed in AT2 cells (Supplementary Fig. 26). In addition, the
dataset contained a larger fraction of unclassified cells (cluster 3) with
nonspecific gene expression, which was annotated AT2 and immune
cells (T cells and macrophages) by top DEGs. Compared with scRNA-
seq, our results were consistent with the undefined cells in snRNA-seq
data of lung tissue51. Next, we compared the proportion of cells in
FFPE(Lung) with that in frozen lung samples that had been reported
fromhealthy donors50, and found thatmost of the cell proportionwere

similar to that of healthy frozen samples (Fig. 6e). For example, the
proportion of AT cells was approximately 50%, indicating that they had
not been replaced by cancer cells, and the status of immune cells
remained stable.

In short, the number of nuclei sufficient for FFPE snRNA-seq
platform can be obtained from such a micro-tissue, and all major cell
types in lung organ can be detected, which provides assistance for
transcriptome studies of clinical puncture samples.

Discussion
In this study, we developed a strategy for high-quality nuclear pre-
paration from FFPE tissues by enzymatic dissociation of archived
samples at low temperature without the need for tedious filtration
step, which therefore provides a critical advance to profile single
nuclei transcriptome from low-quality biological samples of PFA-fixed
or FFPE tissues of. Meanwhile, we performed snRNA-seq on frozen,
PFA-fixed and FFPE brains using 10× Genome and snRandom-seq
technologies, and performed head-to-head comparison. To prove our
method, we performed validation and obtained promising results.
snRNA-seq was conducted on frozen samples using 10× Genome and
snRandom-seq technologies to eliminate platformdifferences, and the
data of frozen sampleswasused as the gold standard for reference.We
used snRandom-seq to perform snRNA-seq on PFA-fixed samples to
compare the nucleus preparation strategies, and explored the applic-
ability of snRNA-seq on FFPE samples as well as its application per-
formance in brain diseases. The CEDmethod and snCED-seq represent
a significant advance in single-nuclei sequencing, enabling researchers
to retrospectively select samples from a large paraffin sample bank,
and facilitating mechanistic studies of brain disease samples that are
difficult to obtain clinically.

Molecular biological application of FFPE tissues has always
been challenging due to the chemical cross-linking and low-quality
RNA. Although researchers have gradually become aware of the
potential for obtaining expression profiles of individual cells or
nuclei FFPE tissues, the approaches of extracting or isolating high-
quality nuclei remains challenging. The acquisition of nuclei is a
crucial step for snRNA-seq of FFPE samples, and its quality directly
determines transcriptome analysis. The preparation methods of
FFPE sample nuclei are longstanding, and are mainly divided into
two categories, hyperthermal enzymatic dissociation strategies and
mechanical extraction strategies. Enzymatically obtained nuclei are
unhea1rd of in transcriptomics studies. In fact, prolonged high-
temperature treatment resulted in secondary RNA degradation of
FFPE samples, and prolonged exposure of nuclei to the enzyme
buffer may increase the permeability of the nuclear membrane,
leading to RNA molecules leakage and adversely affecting snRNA-
seq experiments performed in droplets. The mechanical homo-
genization strategy was less damaging to RNA molecules within
nucleus. However, tissue homogenization for fixed and FFPE tis-
sues, becomes increasingly challenging due to molecular cross-
linking within the nuclei. Firstly, effectively removing excessive
tissue debris poses difficulties and leads to severe contamination of
the snRNA-seq data9; Moreover, the high proportion of rRNA
requires additional removal processes when employing total RNA
protocols21,52. In our early experiments, the large amount of tissue
debris interfered with accurate identification of nuclei due to the
molecular cross-linking introduced by formaldehyde fixation,
which requires a complicated debris removal process, thus affect-
ing the yield of nuclei and losing smaller nuclei. Currently, high-
throughput snRNA-seq platforms employ a combination of enzyme
dissociation and homogenate10. Despite the optimization of nuclear
suspension and RNA quality within the nucleus, their own short-
comings have not been dismissed. Furthermore, all current meth-
ods for preparing nuclei from FFPE samples focus on tissue sections
(5–100 μm), while disease research often involves the tissue blocks.
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Due to the characteristics of dissociation and digestion of nuclei
in the preparationprocess of enzymedissociation, the traditional high-
temperaturemethodmakes the nuclei preparedfirst be digested in the
dissociation solution, or the nuclear membrane is damaged, which
affects the nuclear yield and is very sensitive to the reaction time,
increasing the burden on the experimenter. Our nuclei were obtained
by enzymatic hydrolysis of molecularly cross-linked tissues with a
single step at low temperature, and without ultracentrifugation

through a sucrose cushion and any filtration procedures, thereby
maximizing product retention and nucleation rates. Taking a pair of
mouse hippocampus as an example, the number of nuclei prepared by
CED method was about 10 times that of the traditional method, and
CEDmethod can better enrich the small diameter nuclei missed by the
traditionalmethod.Most importantly, our CEDmethod can effectively
protect the nuclear membrane and maximally retains the nuclear
molecules, providing high-fidelity nuclei for snRNA-seq research. For
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Fig. 6 | Cell heterogeneity revealed in a 50μm human FFPE(Lung) tissue by
snCED-seq. a UMAP of 4271 single-nucleus RNA profiles of human lung tissue.
colored by cluster.b Expression of selected cell-typemarkers in the UMAPs of FFPE
human lung. Gene expression levels are indicated by shades of bule. c Dot plot of
the average expressions of top fivemarkers in each of the 10 cell types. dCounts of

different RNA biotypes detected in FFPE(lung). Expression level (color scale) of
marker genes across clusters and the percentage of cells expressing them (dot
size). e Proportion of annotated cell types of FFPE(lung) by snCED-seq. Source data
are provided as a Source Data file (a–e).
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the latest snRNA-seq technology based on randomprimer capture10 or
gene probe capture8, it is necessary to input nearly one million nuclei
on the premiseof ensuring the output of about 10,000nuclei.OurCED
method effectively avoids the current two major nucleus preparation
strategies, and can export thenucleus stablywithout introducingmore
impurities and damaging the nuclear membrane. The nuclei prepared
by our CEDmethod could be successfully preserved or transported on
dry ice, which we speculated might be due to the fact that the per-
meability of the nuclear membrane was not damaged. In addition, our
CED method has good applicability to a variety of organs, such as
brain, liver, kidney, pancreas, spleen tissues, but slightly poor com-
patibility with heart and lung, although the yield of nuclei was still
higher than that of the mechanical method. The heart has a complex
cellular composition, mainly includingmyocardial tissue, nerve tissue,
Purkinje fiber, connective tissue, epithelial tissue, etc. Similarly, the
main connective component of the lung is composed of connective
tissue, which is rich in collagen fibers, elastic fibers, reticular fibers.
Connective tissue and cell relatively dense structure greatly increases
the difficulty of the heart and lung tissue, and the choice of operating
conditions and enzymes need further adjustment.

The excellent performanceof theCEDmethodwasmaintained for
both PFA-fixed and FFPE tissues in our benchmarking effort. Com-
pared with the HED high-throughput snRNA-Seq database of the PFA-
fixed samples, snCED-seq outperforms well in various perspectives,
supported by the genes and transcripts per nucleus, the percentage of
mitochondrial and ribosomal genes, gene detection sensitivity, gene
expression correlation with frozen samples, especially in gene
expression richness. High-quality and high-sensitivity snRNA-seq data
from post-fixed (PFA-fixed and FFPE) specimens by snCED-seq allows
for the identification of rare cell populations. We further provide a
detailed map of cell-type-specific expression of FFPE samples fromAD
and WT mice, which highlights the predominance of gene expression
richness in our nuclei. Multiple disease-related subpopulations have
been successfully identified, and the DAM has transcriptional inde-
pendence, while the transcriptional similarity between DAA and DAO
subpopulations. There is even a population of genes (Kcnip4, Grin2a,
Lrp1b, etc.) that are in the waiting state of activation, priority in dif-
ferent cells by the interferenceof the disease. In short, nuclei fromCED
method excels in revealing cellular heterogeneity, which contributes
to the precision diagnosis and treatment to human disease.

Overall, this study proposes amethod for the preparation of high-
fidelity nuclei from post-fixed samples, which outperforms traditional
methods in various aspects, and demonstrates good compatibility
with a variety of FFPE organs. The application of FFPE samples in AD
was also investigated and found that our nuclei have potential for
uncovering disease cellular heterogeneity. The simple experimental
protocols and comprehensive transcriptomic information from the
FFPE tissues described in this study are expected to enable large-scale
snCED-seq applications in both basic and clinical research in the
future. Our nuclear preparation strategy lays the foundation for
revealing transcriptomic and even multi-omic information from FFPE
samples.

Methods
Ethical statement
The study was approved by the animal ethical and welfare committee
of Zhongda Hospital Southeast University (approval numbers:
20200104005). All procedures were conducted following the guide-
lines of the animal ethical and welfare committee of SEU. The collec-
tion of human samples and research conducted in this study was
approved by the Research Ethics Committee of the Affiliated Hospital
of Yangzhou University (approval numbers: 2025-YKL02-001). Written
informed consent was obtained from all individual participants. All
applicable institutional and/or national guidelines for the care and use
of animals were followed.

Experimental model
Male wildtype (WT) C57/BL6mice (8 weeks of age) were ordered from
Qinglongshan Animal Farm, Nanjing, China. Different human tissues
were derived from the Affiliated Hospital of Yangzhou University. AD
and their control mice were purchased from Jiangsu Huachuang
sinoPharmaTechCo., Ltd, Taizhou, China. Five-month-old hetero-
zygous 5xFAD transgenic mice (on a C57/BL6 background) co-
overexpress mutant forms of human amyloid precursor protein asso-
ciated with familial AD, the Swedish mutation (K670N/M671L), the
Florida mutation (I716V), the London mutation (V717I) and carry two
FAD mutations (M146L and L286V) people PSEN1. The expression of
both transgenes is regulated by the mouse neurospecific regulatory
elementThy1promoter to drive transgene overexpression in the brain.
Throughout the study, allmice in eachexperimentwerenontransgenic
littermates from the samemouse colony. Allmouse sampleswere from
male animals. The samples in this study were used to validate the
feasibility of themethod, with no specific gender requirements, so sex
and age information of human tissue donors were not collected in
this study.

All the mice were single-housed under standard laboratory con-
ditions, including a 12 h light/darkcycle, temperatures of 25 °C with
40% humidity, with free access to mouse diet and water. The animals
were anesthetized with 500mg/kg tribromoethanol (Sigma, Saint
Louis, MO, USA) and were killed by cervical dislocation. After the
animals were sacrificed, hippocampi were isolated. Fresh frozen (FF)
tissues were obtained by quickly frozen in liquid nitrogen; PFA-fixed
(PFA) tissues were prepared by adding PFA (4%) to the hippocampus
and fixed for 20 h at 4 °C; FFPE samples were prepared by dehydration
the fixed hippocampus twice in 70%, 90%, and 100% ethanol, respec-
tively, and then clearing with xylene solution for 15min, twice, fol-
lowed by paraffin embedding for 2 h (62 °C). Frozen samples and PFA-
fixed sampleswere stored in a −80 °C, and FFPE sampleswere stored at
4 °C. FFPE tissues were prepared from human organ tissues using a
standardizedprotocol and subsequently sectioned at 50μm.Thebrain
organoids were embedded using OCT after fixation.

Single nuclei isolation from PFA-fixed and FFPE tissues
For snap-frozen samples. Thenuclei preparedby thehomogenization
method by Singleron Biological Tech Co. for 10× Genomics snRNA-seq
and M20 Genomics for snRandom-seq.

For PFA-fixed samples.
(1) Cryogenic enzymatic dissociation (CED) method: The brain

tissue was washed three times with 1mL PBS (1×, pH = 7.4) and
cut into 1mm3 pieces in a 2mL enzyme-free centrifuge tube,
adding 1mL dissociation buffer (1.5mg/mL protease K, TE
buffer, pH = 8, 0.5 % sarkosyl, SDS or Triton X-100). The
centrifuge tube was placed transversely in a closed low-
temperature (4 °C) box, and placed on a shaker to sway slightly
6–15 h (The concentration of protease K depends on organ
types, and dissociation timing depends on tissue size and organ
types) to ensure that the solution dissociation system flowed
back and forth between the tube mouth and the tube bottom.
The nuclear suspensionwas transferred to a 1.5mL test tube and
centrifuged, centrifuged at 10,000 rpm for 10min at 4 °C.
Discarded supernatant, and then washed nuclei with 1mL pre-
cold PBS (1×, pH= 7.4) twice, centrifuged at about 10,000× g for
10min at 4 °C. Finally, the nuclei were resuspended in
200–400uL of nuclear store buffer (NSB, 1× PBS, 0.2 U/mL
RNase Inhibitor) and stored at −80 °C.

(2) High temperatures enzymatic dissociation (HED) method:
We optimized and improved the previously described method
of enzymatic dissociation nuclei at 37 °C overnight13,15,53,54. These
methods are mainly applied to paraffin sections or scrolls, and
the cell suspension after digestion and the undigested bulk
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tissue are separated by the nylon pores or 25-G needles.
Considering that most of the research samples of snRNA-seq
technology are tissue blocks, we extended the optimization
method to tissue blocks. In brief, the brain tissue was washed
three times with 1mL PBS (1×, pH= 7.4) and cut into 1mm3

pieces in a 2mL enzyme-free centrifuge tube, adding 1mL
dissociation buffer (0.6mg/mL protease K, TE buffer, pH = 8,
0.5% SDS/Triton X-100), and shaken slightly for 5 and 6 h. Then,
Nuclei were collected and resuspended in NSB. In order to
ensure the yield and morphology integrity of the nuclei, the
nuclei of dissociation process for DAPI staining and detection
under a microscope. Insufficient dissociation time affects the
number of nuclei, but the nuclearmembranewill be damaged or
even the nuclei will be digested if the dissociation time is
too long.

For FFPE samples.
(1) CED method: The target tissue was trimmed out of the FFPE

blocks with a sterilized scalpel and placed in a 2mL tube, and
washed thrice with 1.5mL xylene for 2 h at 4 °C to remove the
paraffin. The samples were gently rehydrated by immersing the
samples in a graded series of ethanol solutions, starting with
pure 100% ethanol and ending with 50% ethanol (100% × 2, 95%,
70%, 50% × 1) for 1 h, thenwashed twice with pre-coldwater. The
steps of nuclei preparedwas same asPFA-fixed tissue. An aliquot
of nuclei was stained with DAPI (4′,6-diamidino-2-phenylindole)
staining solution, loaded on a hemocytometer and observed
under an inverted fluorescence microscope. Finally, morpholo-
gically intact, free of impurities, and abundant (in millions)
nuclei were stored on dry ice and sent to M20 Genomics.

(2) Mechanical homogenization dissociationmethod: FFPE brain
nuclei were extracted entirely with the use of three mechanical
homogenization strategies without any modification, including
two reported methods (snPATHO-seq26 and snRandom-seq10)
and a commercial kit. (1)MHD1: FFPE sectionswere cut from the
paraffin block and were washed with xylene to remove paraffin
and rehydrated via a sequence of ethanol baths, and then rinsed
with RPMI1640. Then, tissue disruption physically using a pestle
in 100μL digestion mix (1mg/mL Liberase TM, 1mg/mL
Collagenase D, and 1 U/μL of RNAse inhibitor in RPMI1640),
and then filled up to 1mL and subjected to digestion at 37 °C for
60min. The pre-digested tissue was treated with 1× Nuclei Ez
lysis buffer with 2% BSA, and the separated nuclei were filtered
through a 70μmmesh, double-rinsed with 1× PBS + 1% BSA, and
once with a 0.5× PBS+0.02% BSA blend. They were then
resuspended in this blend and re-filtered via a 40μm mesh. (2)
MHD2: FFPE sections were cut from the paraffin block and were
washed with xylene to remove paraffin and rehydrated via a
sequence of ethanol baths as reported10. The samples were then
washed twice with pre-cold wash buffer and homogenized with
Dounce homogenizer with the presence of pre-cold lysis buffer
(1 × PBS, 0.1% Triton X-100, 1 U/μL RNase Inhibitor) on ice, then
1mL lysis buffer to rinse the douncer, and 100μL of 10mg/mL
proteinase K was added into the lysis buffer, incubating at 37 °C
for 5min. Then, the isolated nuclei were filtered through a
20μmcellstrainer andwashed twicewithwashbuffer. (3) Nuclei
Isolation Kit for FFPE Tissue_MHD3 (52301-10): The 50μm
sections was placed in a 1.5mL centrifuge tube after depar-
affinized with xylene and hydrated with ethanol, then added
200μL of lysate and fully ground, another 400μL of lysate was
added and placed on ice for 5min. Subsequently, 150μL of
digestive enzyme lysate was added and shaken at 500 rpm for
10min at 50 °C. The mixture was filtered using a 40 μm cell
sieve, the supernatant was discarded, and 500μL of debris
removal solutionwas added, centrifuged at 2000 × g for 5min at

4 °C, and discarded supernatant. The nuclei were then resus-
pended in 500μL of the wash buffer and collected and stored
nuclei in the wash buffer. The single nuclei were processed to
snRNA-seq according to the reported protocol10. All FFPE
sections of mouse were derived from the whole mouse
hippocampus.

Nuclear quality assessment
Morphologyandcountingof nuclei. TrypanBlue andDAPI (20μg/mL)
were mixed with nuclear suspension 1:1, the quality control step was
performed by viewing the nuclei under the microscope on a hemocyt-
ometer to check nuclei shape and count. Among them, the nuclei mor-
phology and counting results of different organs (heart, liver, spleen,
lung, kidney, pancreas, etc.), snPATHO-seq and snRandom-seq protocols
were performed by M20 Genomics. The nuclei from Nuclei Isolation Kit
weredetectedby the company. Theother nuclear quality inspectiondata
were obtained from the method in our study.

Extraction RNA of nuclear. We modified the previously described of
RNA extracted18. Bulk nuclei were first suspended in 100 uL PBS (1×,
7.4), and with 1-to-1 volume ratio lysis buffer (200mM Tris pH 7.5, 6%
Ficoll type 400, 0.2% Sarkosyl, 20mM EDTA, 50mM DTT and protei-
nase K), incubated at 56 °C for different time, then RNA was extracted
using the RNeasy PlusMini Kit (Qiagen, Hilden, Germany). The specific
process according to the manufacturer’s protocol. Proteinase K con-
centration (0–1.5mg/mL) was optimized to improve RNA yield and
decross-linking time (15–60min) was optimized to reduce RNA
degradation. Finally, RNA quality was evaluated by the Qubit 4.0 and
the RNA 6000 Nano Kit (Agilent, Santa Clara, CA, USA) with Agilent
4150 Bioanalyzer.

Construction of cDNA. The cDNA was prepared using the Smart-Seq2
protocol with the following modifications. Prior to cDNA synthesis,
two master mixes were prepared on ice: Mix1 (1 ng RNA, 10μM Oligo
dT (AAGCAGTGGTATCAACGCAGAGTACT30VN) and 10mM dNTP),
Mix2 (5× First-Strand Buffer, 25mM MgCl2, 40U/μL RNase Inhibitor,
100μM DTT, 10μM TSO adaptor (AAGCAGTGGTATCAACGCA-
GAGTACAT/rG//rG//iXNA_G/), 5M Betaine, and 100U/μL Reverse
Transcriptase). All prepared solutions were kept on ice for subsequent
use. Mix1 was denatured at 72 °C for 3min (lid temperature: 105 °C),
immediately chilled on ice. Subsequently, Mix1 and Mix2 were com-
bined, reverse transcription (RT) was performed at 42 °C (90min),
followedby 10 cycles (50 °C_2min and 42 °C_2min), 70 °C (15min), and
4 °C hold. Following RT and template switching, cDNA was amplified
using KAPA HotStart HIFI 1× ReadyMix and PCR primer (AAG-
CAGTGGTATCAACGCAGAGT). The PCR conditions were as follows:
98 °C (3min), followed by 20 cycles (98 °C_20 s, 67 °C_15 s and
72 °C_6 min), 72 °C (5min), and 4 °C hold. The PCR products were
purified using 0.8× AMPure XP beads, and cDNA/library quality was
assessedusing aBioanalyzer 4150 (Agilent, SantaClara, CA,USA)with a
High Sensitivity DNA chip.

Library construction and sequencing
For frozen samples. Isolated nuclei were subjected to droplet-based 3′
end massively parallel sequencing using Chromium Single Cell 3′
Reagent Kits per the manufacturer’s instructions (10× Genomics) and
droplet-based snRNA sequencing technology by capturing full-length
total RNAs with random primers (M20 Genomics).

For PFA-fixed and FFPE samples. In the single-cell transcriptome
sequencing experiments of this study, we utilized the VITAcruizer
single-cell preparation instrument DP400 (Cat #E20000131, M20
Genomics) to achieve droplet generation, single-cell partition and
encapsulation, and nucleic acid capture. The VITApilote high-
throughput FFPE single-cell transcriptome kit (Cat #R20121124, M20

Article https://doi.org/10.1038/s41467-025-59464-0

Nature Communications |         (2025) 16:4101 15

www.nature.com/naturecommunications


Genomics) was employed for pre-library sample processing, single-cell
library construction, and purification. Experimental procedures were
conducted following the respective kit and instrument manuals. The
main workflow is outlined below.

Nuclei were removed from dry ice and thawed at 4 °C, and the
qualified single nuclei were subjected to snRNA-seq processing
according to the snRandom-seq protocol10. In brief, the counted nuclei
were used for in situ DNA blocking using theDNA Polymerase kit (M20
Genomics), then quickly put on ice. Prepare the in situ reverse tran-
scription reaction (ISRT) mix (above nuclei,10 µM random primer,
10 µM oligo(dT) primer, Reverse Transcriptase, 5× reverse transcrip-
tion buffer, 100mMdNTP and 200U/µL RNase Inhibitor), and the ISRT
was performed by 12 cycles (8 °C_10 s, 15 °C_15 s, 20 °C_15 s, 30 °C_30 s,
and 42 °C_1min), 42 °C (30min) and 4 °C hold. Then, added the dA
tailing by the TdT reaction kit. Subsequently, the reverse-transcribed
nuclei, 2× DNA extension reaction mixed and barcoded beads con-
taining cell barcodes and UMIs were encapsulated into droplets using
the microfluidic platform of M20 Genomics, and the emulsions were
incubated at 37 °C (1 h), 50 °C (30min), 60 °C (30min), and 75 °C
(20min). After the barcoding reaction, droplets were broken by mix-
ing with PFO buffer (M20 Genomics). The aqueous phase was taken
out and purified by Ampure XP beads. PCR was performed to amplify
the purified product with PCR Primer1 (GGAGTTGGAGTGAGTGGAT-
GAGTGATG) andPrimer2 (GTGAGTGATGGTTGAGGATGTGTGGAG
ATA) at 95 °C (1min), followed by 20 cycles (95 °C_30 s, 60 °C_30 s and
72 °C_2min), 72 °C (5min) and 4 ̊C hold. The amplified product was
purified by Ampure XP beads and quantified by Qubit. VAHTS Uni-
versal DNA Library Prep Kit for Illumina V3 was used to construct
library. Library sequencing was performed using the NovaSeq 6000
and S4 Reagent Kit with paired end reads of 150.

Data analysis for C57/BL6 mice
Preprocessing of snRNA-seq data. Mus_musculus. GRCm39.109
reference genomewas downloaded from ensemble database. Then we
used STARsolo module in STAR (2.7.10a) with default parameters to
generate the gene expression matrix and filter the valid nuclei. The
Seurat v4.2 was applied for the major downstream analysis. Before we
started downstream analysis, there are some filtering metrics to
guarantee the reliability of each data.

detected in fewer than 3 cells were filtered to avoid cellular sto-
chastic events. We deleted mitochondrial genes after the quality con-
trol, the left genes used for downstream analysis. For the cell part, we
set different filter standards for each dataset according to the UMI and
gene numbers distribution to filter low quality cells. Finally, we got
23248 genes and 142661 cells as the expression matrix to do down-
stream analysis in the method comparison part.

Clustering and cell annotation. After quality control, unsupervised
clustering was performed using Seurat v4.2. A series of preprocessing
procedures including normalization, variance stabilization and scaling
data, were performed in an R function ‘SCTransform’based on reg-
ularized negative binomial regression. Then, we selected 2000 highly
variable genes to integrate all sequencing libraries using ‘FindInte-
grationAnchors’ and ‘IntegrateData’ functions, followed by the
regression of technical noise. Principal component analysis (PCA) was
performed using integrated output matrix, and the reasonable prin-
cipal component (PC) numbers was chosen using the ‘JackStraw’
function. And we chose the top 30 significant PCs for downstream
cluster identification and visualization. Clusterswere defined based on
‘FindClusters’ function with resolution from 0.1 to 1 with 0.1 as
seperation. UMAP was used for the final dimension reduction and
visualization. Based on the cluster results with resolution equal to 0.2,
we next used ‘FindAllMarkers’ function with MAST algorithm. We
ranked themarker genes according to thep-value and log2 fold change
(log2 FC) within each cluster and searched top genes in Cell Marker

database55 and Panglao DB56 databases to annotate cell types of
clusters.

Differential expression analysis. Within each cluster, we calculated
differentially expressed genes (DEGs) between 2 different conditions
by using ‘FindMarkers’ function. we used ‘MAST’ setting aswell and the
Benjamini–Hochberg procedure to adjust p value. Then we set
threshold q_adjust <0.05, absolute value of log2 FC >0 to filter DEGs.
The DEGs functional enrichment analysis based on GO and Kyoto
Encyclopedia of Genes and Genomes (KEGG) was applied by an R
package ClusterProfile v4.10.0 using a hypergeometric test and cor-
rected for multiple hypothesis by FDR.

Data analysis for AD and WT mice
Preprocessing of snRNA-seq data. Mus_musculus. GRCm39.109
reference genomewas downloaded from ensemble database. Then we
used STARsolo module in STAR (2.7.10a) with default parameters to
generate the gene expressionmatrix and filter the valid nuclei. =Seurat
v4.4.0 was applied for the major downstream analysis. Before starting
the downstream analysis, we used four filtering metrics to ensure the
reliability of the data. (1) Gene detected in fewer than 3 cells were
filtered to avoid cell random events; (2) Remove nuclei with mito-
chondrial gene expressionpercentage >10% to exclude apoptotic cells;
(3) Remove UMI > 30000 cells; (4) Remove cells outside the range of
300 to 5000 genes. After filtering cells and genes based on the above
metrics,we further useDoublet Finder V2.0with default parameters to
predict and remove potential doublet in each sample. Only cells that
have passed a rigorous multi-step quality control regimen are con-
sidered for downstreamanalysis. Thus, 23,248 genes and 63,789 nuclei
were retained in AD part.

Clustering and cell annotation. After quality control, we aligned the
data from different batches using the SCTransform57 integration
workflow in Seurat with default settings. We identified high-resolution
clusters (resolution =0.1) using the Seurat functions FindNeighbors
and FindClusters (Leiden clustering algorithm) based on the first 30
principal components. To annotate cell types within this dataset, we
employed two distinct approaches: (1) manual annotation using pre-
viously published databases Cellmarker 2.0 and and Panglao DB
databases, and (2) projecting annotations onto the cells analyzed in
this study by integrating the clustering results with the dataset from
Habib et al.25 using the Seurat functions FindTransferAnchors and
TransferData. Combining these methods yielded detailed and reliable
cell cluster information. We also excluded certain less reliable cell
types (e.g., Ex.neuron2 and Ex.IEG). During the subsequent cell pro-
portion analysis, we observed a significant imbalance in the cell pro-
portions of the AD1 sample, with neurons comprising themajority and
non-neuronal cells only accounting for 4%. Thus, we deemed this
sample unreliable and excluded it from further analysis. Ultimately, we
retained 23,248 genes and 52,569 cells.

For the subcluster analysis of astrocytes, oligodendrocytes, and
microglia,we similarly utilized the Seurat functions FindNeighbors and
FindClusters on the top 30 principal components, setting the resolu-
tion to 0.1.

Differential expression analysis. Within each cluster, we used the
“FindMarkers” function in the Seurat package to detect DEGs between
AD and WT conditions. We applied the “MAST” setting and controlled
the false discovery rate (FDR) using the Benjamini–Hochberg proce-
dure. We set thresholds of |avg_log2FC| > 0.25 and p_val_adj <0.05 to
filter DEGs, identifying both upregulated and downregulated genes in
AD relative to WT for each cluster.

Enrichment analysis. The functional enrichment analysis of Differ-
entially ExpressedGenes (DEGs) based onGObiological processes and
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the KEGG was conducted using the R package ClusterProfile v4.11.1.
The analysis employed a hypergeometric test and corrected for mul-
tiple hypotheses using the False Discovery Rate (FDR). For enrichment
between gene sets, the testGeneOverlap function from the R package
GeneOverlap v1.34.0 was utilized to perform Fisher’s exact test, iden-
tifying overlaps among different gene sets.

Comparison with external data sets. To compare our data with
external datasets, we collected single-cell data from studies by Grub-
man,Mathys, Zhou, Liddelow, andothers. Specifically,wegathered the
top markers for astrocytes, oligodendrocytes, and microglia from
these studies. We then analyzed the relative expression levels of these
markers in our own dataset to identify corresponding AD-related cell
subtypesmentioned in these publications. This comparative approach
allowed us to validate our findings and highlight specific cell types
associated with Alzheimer’s disease in our study.

Data analysis for human tissues
Quality control and filtering. Potential doublets were identified and
removed using scDblFinder. For gene filtering, genes detected in fewer
than three cells were excluded to minimize the impact of stochastic
cellular events. Following quality control, mitochondrial genes (with
the percent of mitochondrial gene > 10%) were removed, and the
remaining genes were retained for downstream analysis. For cell fil-
tering, dataset-specific thresholds were applied based on UMI
(retaining cells with <20,000 UMIs) and gene counts (retaining cells
with <6000 detected genes) to eliminate low-quality cells. After these
filtering steps, the final expression matrix consisted of 29,849 genes
and 4271 cells for subsequent analyses.

Clustering and cell annotation
After quality control, unsupervised clustering was performed using
Seurat v5.2. The preprocessing pipeline included normalization, var-
iance stabilization, and data scaling. Since only a single sample was
analyzed, batch correction or integration was unnecessary. PCA was
conducted using the normalized expression matrix, and significant
principal components (PCs) were determined via the JackStraw
method. The top 10 significant PCs were selected for downstream
clustering and visualization. Clusters were identified using the
FindClusters function, testing resolutions ranging from 0.4 to 1.2 (in
increments of 0.1). UMAP was applied for dimensionality reduction
and visualization.

For cell type annotation, the clustering result at resolution =
0.4 was used to identify marker genes via the FindAllMarkers
function (Wilcoxon rank-sum test). Marker genes were ranked
based on adjusted p-values and log2 FC. The top marker genes were
then cross-referenced with established cell-type databases, includ-
ing CellMarker2 and PanglaoDB, to assign biological identities to
each cluster.

Statistics and reproducibility
Statistical details for each experiment are provided in the figure
legends. The FFPE single nuclei isolation experiment, RNA quality
comparison experiment and DNA fragments analysis experiment
were repeated more than three times independently with similar
results. The snRNA-seq experiment was repeated three times inde-
pendently with similar results. No statistical method was used to
predetermine the sample size. No data were excluded from the
analyses. The experiments were not randomized. The Investigators
were not blinded to allocation during experiments and outcome
assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The snRNA-seqdatasets generated in this studyhavebeendeposited in
the National Center for Biotechnology Information (NCBI) under
accession code PRJNA1117576. Source data are provided with
this paper.
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